Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = \frac{3}{2}\), công sai \(d = \frac{1}{2}\). Khi đó
a) Số hạng tổng quát là \({u_n} = 1 + \frac{n}{3}\).
b) \(5\) là số hạng thứ 8 của cấp số cộng đã cho.
c) \(\frac{{15}}{4}\) là một số hạng của cấp số cộng đã cho.
d) Tổng 100 số hạng đầu của cấp số cộng \(\left( {{u_n}} \right)\) bằng \(2620\).
Cho cấp số cộng \(\left( {{u_n}} \right)\) có số hạng đầu \({u_1} = \frac{3}{2}\), công sai \(d = \frac{1}{2}\). Khi đó
a) Số hạng tổng quát là \({u_n} = 1 + \frac{n}{3}\).
b) \(5\) là số hạng thứ 8 của cấp số cộng đã cho.
c) \(\frac{{15}}{4}\) là một số hạng của cấp số cộng đã cho.
d) Tổng 100 số hạng đầu của cấp số cộng \(\left( {{u_n}} \right)\) bằng \(2620\).
Quảng cáo
Trả lời:
a) S, b) Đ, c) S, d) S
a) Ta có \({u_n} = {u_1} + \left( {n - 1} \right)d = \frac{3}{2} + \left( {n - 1} \right).\frac{1}{2} = 1 + \frac{n}{2}\).
b) Ta có \({u_8} = 1 + \frac{8}{2} = 5\).
c) Xét \(\frac{{15}}{4} = 1 + \frac{n}{2} \Rightarrow n = \frac{{11}}{2} \notin \mathbb{N}*\). Suy ra \(\frac{{15}}{4}\) không là một số hạng của cấp số cộng đã cho.
d) Có \({S_{100}} = \frac{{100.\left[ {2.\frac{3}{2} + \left( {100 - 1} \right).\frac{1}{2}} \right]}}{2} = 2625\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: C
Hàm số xác định khi và chỉ khi \(\sin x \ne 0 \Leftrightarrow x \ne k\pi ,{\rm{ }}k \in \mathbb{Z}.\)
Vật tập xác định \({\rm{D}} = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}.\)
Lời giải
a) S, b) Đ, c) Đ, d) S
a) Ta có \(\mathop {\lim }\limits_{x \to - 2} f\left( x \right) = \mathop {\lim }\limits_{x \to - 2} \left( {x - 2} \right) = - 4\).
b) Ta có \(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} \left( {x - 2} \right) = - 3\).
c) Ta có \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ + }} \sqrt {{x^2} + 1} = \sqrt 2 \).
d) Vì \(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to - 1} f\left( x \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.