Biết rằng giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {x + 9} + \sqrt {x + 16} - 7}}{x} = \mathop {\lim }\limits_{x \to 0} \left[ {\frac{a}{{\sqrt {x + 9} + b}} + \frac{c}{{\sqrt {x + 16} + d}}} \right]\) với \(a;b;c;d\) là các số nguyên dương. Tính \(a + b + c + d\).
Biết rằng giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {x + 9} + \sqrt {x + 16} - 7}}{x} = \mathop {\lim }\limits_{x \to 0} \left[ {\frac{a}{{\sqrt {x + 9} + b}} + \frac{c}{{\sqrt {x + 16} + d}}} \right]\) với \(a;b;c;d\) là các số nguyên dương. Tính \(a + b + c + d\).
Quảng cáo
Trả lời:
Trả lời: 9
\(\mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {x + 9} + \sqrt {x + 16} - 7}}{x} = \mathop {\lim }\limits_{x \to 0} \left( {\frac{{\sqrt {x + 9} - 3}}{x} + \frac{{\sqrt {x + 16} - 4}}{x}} \right)\)
\[ = \mathop {\lim }\limits_{x \to 0} \left( {\frac{x}{{x\left( {\sqrt {x + 9} + 3} \right)}} + \frac{x}{{x\left( {\sqrt {x + 16} + 4} \right)}}} \right)\]\[ = \mathop {\lim }\limits_{x \to 0} \left( {\frac{1}{{\sqrt {x + 9} + 3}} + \frac{1}{{\sqrt {x + 16} + 4}}} \right)\].
Do đó \(a = 1;b = 3;c = 1;d = 4\). Vậy \(a + b + c + d = 9\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Đáp án đúng là: C
Hàm số xác định khi và chỉ khi \(\sin x \ne 0 \Leftrightarrow x \ne k\pi ,{\rm{ }}k \in \mathbb{Z}.\)
Vật tập xác định \({\rm{D}} = \mathbb{R}\backslash \left\{ {k\pi ,k \in \mathbb{Z}} \right\}.\)
Lời giải
a) S, b) Đ, c) Đ, d) S
a) Ta có \(\mathop {\lim }\limits_{x \to - 2} f\left( x \right) = \mathop {\lim }\limits_{x \to - 2} \left( {x - 2} \right) = - 4\).
b) Ta có \(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ - }} \left( {x - 2} \right) = - 3\).
c) Ta có \(\mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to - {1^ + }} \sqrt {{x^2} + 1} = \sqrt 2 \).
d) Vì \(\mathop {\lim }\limits_{x \to - {1^ - }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to - {1^ + }} f\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to - 1} f\left( x \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.