Câu hỏi:

19/10/2025 32 Lưu

Nếu \[\sin x + \cos x = \frac{1}{2}\] thì \[\sin 2x\] bằng

A. \[\frac{3}{4}.\]   
B. \[\frac{3}{8}.\]            
C. \[\frac{{\sqrt 2 }}{2}.\]                  
D. \[ - \frac{3}{4}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Ta có: \[\sin x + \cos x = \frac{1}{2}\]

       \[ \Leftrightarrow {\left( {\sin x + \cos x} \right)^2} = \frac{1}{4}\]

       \[ \Leftrightarrow {\sin ^2}x + 2\sin x\cos x + {\cos ^2}x = \frac{1}{4}\]

       \[ \Leftrightarrow 1 + \sin 2x = \frac{1}{4}\]

       \[ \Leftrightarrow \sin 2x = - \frac{3}{4}\].

Vậy \[\sin 2x = - \frac{3}{4}.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: 14

Ta có: \[ - 1 \le \cos \left( {\frac{{\pi t}}{8} + \frac{\pi }{4}} \right) \le 1\] \[ \Leftrightarrow 9 \le 3\cos \left( {\frac{{\pi t}}{8} + \frac{\pi }{4}} \right) + 12 \le 15\].

Mực nước của con kênh cao nhất khi độ sâu của mực nước trong kênh lớn nhất.

Do đó mực nước của con kênh cao nhất bằng \[15{\rm{ }}\left( m \right)\] khi

\[\cos \left( {\frac{{\pi t}}{8} + \frac{\pi }{4}} \right) = 1\]\[ \Leftrightarrow t = - 2 + 16k\], \[k \in \mathbb{Z}\].

Vì trong một ngày có 24 giờ nên \[0 \le - 2 + 16k \le 24 \Leftrightarrow \frac{1}{8} \le k \le \frac{{26}}{{16}}\].

Vì \[k \in \mathbb{Z}\] nên \[k = 1\]\[ \Rightarrow t = 14\]giờ.

Vậy mực nước của con kênh cao nhất khi \[t\] bằng \[14\] giờ.

Lời giải

Hướng dẫn giải

Đáp án đúng là: 0,5

Cho hình chóp \[S.ABCD\] có đáy \[ABCD\] là (ảnh 1)

Gọi \[F = AB \cap CD\]. Nối \[F\] với \[M\], \[FM \cap SC = N\]. Khi đó, \[N\] là giao điểm của mặt phẳng \[\left( {ABM} \right)\] và đường thẳng \[SC\].

Theo giả thiết, ta có \[AD = 2BC\] và \[AD\parallel BC\] do đó \[BC\] là đường trung bình của tam giác \[FAD\].

Suy ra \[C\] là trung điểm của \[FD\].

Trong mặt phẳng \[\left( {SCD} \right)\] kẻ \[CE\parallel NM,{\rm{ }}\left( {E \in SD} \right)\].

Do \[C\] là trung điểm \[FD\] nên suy ra \[E\] là trung điểm \[MD\] và \[M\] là trung điểm \[SE\].

Do \[MN\parallel CE\] và \[M\] là trung điểm \[SE\] nên \[MN\] là đường trung bình của tam giác \[SCE.\]

Từ đó suy ra \[N\] là trung điểm \[SC\] và \[\frac{{SN}}{{SC}} = \frac{1}{2} = 0,5.\]

Câu 4

A. qua \[M\] và song song với \[AB.\]            
B. qua \[N\] và song song với \[BD.\]
C. qua \[G\] và song song với \[CD.\]             
D. qua \[G\] và song song với \[BC.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP