Câu hỏi:

19/10/2025 6 Lưu

Cho cấp số nhân \[\left( {{u_n}} \right)\] có \[{u_1} = 3\] và \[15{u_1} - 4{u_2} + {u_3}\] đạt giá trị nhỏ nhất. Tìm số hạng thứ 11 của cấp số nhân đã cho.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: 3072

Gọi \[q\] là công bội của cấp số nhân \[\left( {{u_n}} \right)\].

Ta có: \[{u_2} = {u_1}.q = 3q;{\rm{ }}{u_3} = {u_1}.{q^2} = 3{q^2}.\]

Suy ra \[15{u_1} - 4{u_2} + {u_3} = 45 - 12q + 3{q^2}\]\[ = 3{\left( {q - 2} \right)^2} + 33 \ge 33,\forall q \in \mathbb{R}.\]

Ta có: \[15{u_1} - 4{u_2} + {u_3}\] đạt giá trị nhỏ nhất bằng \[33\] khi và chỉ khi \[3{\left( {q - 2} \right)^2} = 0 \Leftrightarrow q = 2.\]

Khi đó, \[{u_{11}} = {u_1}.{q^{10}} = 3072.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: 14

Ta có: \[ - 1 \le \cos \left( {\frac{{\pi t}}{8} + \frac{\pi }{4}} \right) \le 1\] \[ \Leftrightarrow 9 \le 3\cos \left( {\frac{{\pi t}}{8} + \frac{\pi }{4}} \right) + 12 \le 15\].

Mực nước của con kênh cao nhất khi độ sâu của mực nước trong kênh lớn nhất.

Do đó mực nước của con kênh cao nhất bằng \[15{\rm{ }}\left( m \right)\] khi

\[\cos \left( {\frac{{\pi t}}{8} + \frac{\pi }{4}} \right) = 1\]\[ \Leftrightarrow t = - 2 + 16k\], \[k \in \mathbb{Z}\].

Vì trong một ngày có 24 giờ nên \[0 \le - 2 + 16k \le 24 \Leftrightarrow \frac{1}{8} \le k \le \frac{{26}}{{16}}\].

Vì \[k \in \mathbb{Z}\] nên \[k = 1\]\[ \Rightarrow t = 14\]giờ.

Vậy mực nước của con kênh cao nhất khi \[t\] bằng \[14\] giờ.

Lời giải

Hướng dẫn giải

a) Đ

b) S

c) Đ

d) S

 

a) Ta có: \[\left\{ \begin{array}{l}{u_4} - {u_2} = 54\\{u_5} - {u_3} = 108\end{array} \right.\] \[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}.{q^3} - {u_1}.q = 54\\{u_1}.{q^4} - {u_1}.{q^2} = 108\end{array} \right.\]

\[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}.\left( {{q^3} - q} \right) = 54\\{u_1}.\left( {{q^4} - {q^2}} \right) = 108\end{array} \right.\] \[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}.\left( {{q^3} - q} \right) = 54\\\frac{{{q^4} - {q^2}}}{{{q^3} - q}} = 2\end{array} \right.\]

     \[ \Leftrightarrow \left\{ \begin{array}{l}{u_1}.\left( {{q^3} - q} \right) = 54\\q = 2\end{array} \right.\] \[ \Leftrightarrow \left\{ \begin{array}{l}{u_1} = 9\\q = 2\end{array} \right.\].

Vậy số hạng đầu của cấp số nhân là \[{u_1} = 9.\]

b) Công bội của cấp số nhân là \[q = 2.\]

c) Ta có: \[{S_n} = 4599\] \[ \Leftrightarrow \frac{{{u_1}\left( {1 - {q^n}} \right)}}{{1 - q}} = 4599\] \[ \Leftrightarrow \frac{{9.\left( {1 - {2^n}} \right)}}{{1 - 2}} = 4599\].

\[ \Leftrightarrow - 9.\left( {1 - {2^n}} \right) = 4599\] \[ \Leftrightarrow 1 - {2^n} = - 511\] \[ \Leftrightarrow {2^n} = 512\] \[ \Leftrightarrow n = 9\].                                                                                               

Vậy tổng của 9 số hạng đầu tiên bằng \[4599\].

d) Ta có: \[{u_k} = 576\] \[ \Leftrightarrow {u_1}.{q^{k - 1}} = 576\] \[ \Leftrightarrow {9.2^{k - 1}} = 576\] \[ \Leftrightarrow {2^{k - 1}} = 64\] \[ \Leftrightarrow k = 7.\]

Vậy số \[576\] là số hạng thứ 7 của cấp số nhân.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP