Câu hỏi:

20/10/2025 31 Lưu

Chọn khẳng định sai

A. Hai đường chéo nhau thì không có điểm chung.    
B. Hai đường thẳng không có điểm chung thì chéo nhau.    
C. Hai đường thẳng chéo nhau thì không cùng nằm trên bất kì mặt nào.    
D. Hai đường thẳng có từ 2 điểm chung thì trùng nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Hai đường thẳng không có điểm chung thì có thể song song hoặc chéo nhau.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 9

Cho tứ diện \(ABCD\). Trên cạnh \( (ảnh 1)

Gọi \(I\) là giao điểm của đường thẳng \(MN\) và đường thẳng \(CD\).

Khi đó \(\left\{ \begin{array}{l}I \in MN\\I \in CD \subset \left( {BCD} \right)\end{array} \right.\)\( \Rightarrow MN \cap \left( {BCD} \right) = \left\{ I \right\}\).

Kẻ \(DE//AC\left( {E \in IM} \right)\).

Do \(DE//CM\) nên \(\frac{{ID}}{{IC}} = \frac{{ED}}{{MC}} \Rightarrow \frac{{ID}}{{IC}} = \frac{{ED}}{{2AM}}\) (1).

Do \(DE//AM\) nên \(\frac{{ED}}{{AM}} = \frac{{ND}}{{NA}} = \frac{1}{2}\) (2).

Từ (1) và (2) ta có \[\frac{{ID}}{{IC}} = \frac{1}{4}\]. Vậy \(a + 2b = 9\).

Câu 2

A. Hàm số đồng biến trên \[\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right).\]                                             
B. Hàm số đồng biến trên \[\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right).\]    
C. Hàm số đồng biến trên \[\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right).\]                                             
D. Hàm số đồng biến trên \[\left( { - \frac{\pi }{2};0} \right).\]

Lời giải

Đáp án đúng là: D

Dựa vào đồ thị, ta có hàm số đồng biến trên \[\left( { - \frac{\pi }{2};0} \right).\]