Chọn khẳng định đúng trong các khẳng định sau.
Chọn khẳng định đúng trong các khẳng định sau.
Quảng cáo
Trả lời:

Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau. Chọn C.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
PHẦN II. TỰ LUẬN
Hằng ngày, mực nước của con kênh lên xuống theo thủy triều. Độ sau \(h\) (mét) của mực nước trong kênh tại thời điểm \(t\) (giờ) \(\left( {0 \le t \le 24} \right)\) được cho bởi công thức: \(h = 2\cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{6}} \right) + 10\). Tại thời điểm nào trong ngày thì độ sâu của mực nước trong kênh bằng 12 mét.
PHẦN II. TỰ LUẬN
Hằng ngày, mực nước của con kênh lên xuống theo thủy triều. Độ sau \(h\) (mét) của mực nước trong kênh tại thời điểm \(t\) (giờ) \(\left( {0 \le t \le 24} \right)\) được cho bởi công thức: \(h = 2\cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{6}} \right) + 10\). Tại thời điểm nào trong ngày thì độ sâu của mực nước trong kênh bằng 12 mét.
Lời giải
Độ sâu của mực nước trong kênh bằng 12 mét khi \(2\cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{6}} \right) + 10 = 12\)\( \Leftrightarrow \cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{6}} \right) = 1\)
\( \Leftrightarrow \frac{{\pi t}}{{12}} + \frac{\pi }{6} = k2\pi \)\( \Leftrightarrow t = - 2 + 24k\).
Vì \(0 \le t \le 24\) nên \(0 \le - 2 + 24k \le 24\)\( \Leftrightarrow \frac{1}{{12}} \le k \le \frac{{13}}{{12}}\) mà \(k \in \mathbb{Z}\) \( \Rightarrow k = 1\).
Do đó \(t = 22\).
Vậy vào lúc 22 giờ thì độ sau của mực nước trong kênh bằng 12 mét.
Lời giải
a) Có \(M \in SA \subset \left( {SAD} \right) \Rightarrow M \in \left( {SAD} \right)\).
b) Xét \(\Delta ABD\), có \(O\) là trung điểm của \(BD\), \(N\) là trung điểm của \(AD\) nên \(ON\) là đường trung bình của \(\Delta ABD\).
Suy ra \(ON//AB\).
c) Tương tự \(OM//SC\). Mà \(OM \subset \left( {SAC} \right)\) nên OM không song song (SAC).
d) Có \(OM//SC\) mà \(SC \subset \left( {SCD} \right) \Rightarrow OM//\left( {SCD} \right)\)(1).
Có \(ON//AB\) mà \(AB//CD\) nên \(ON//CD\) mà \(CD \subset \left( {SCD} \right)\). Suy ra \(ON//\left( {SCD} \right)\) (2).
Từ (1) và (2), suy ra \(\left( {OMN} \right)//\left( {SCD} \right)\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Cho hàm số \(y = f\left( x \right) = \frac{{3x + 1}}{{x - 1}}\). Khi đó
a) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = + \infty \).
b) \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 4\).
c) Hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0} = 1\).
d) Hàm số \(y = f\left( x \right)\) liên tục trên từng khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.