B. TRẮC NGHIỆM ĐÚNG - SAI. Thí sinh trả lời từ câu 1 đến câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành tâm \(O\). Gọi \(M,N\) lần lượt là trung điểm của \(SA,AD\). Khi đó
a) \(M \in \left( {SAD} \right)\).
b) \(ON//AB\).
c) \(OM//\left( {SAC} \right)\).
d) \(\left( {OMN} \right)//\left( {SCD} \right)\).
B. TRẮC NGHIỆM ĐÚNG - SAI. Thí sinh trả lời từ câu 1 đến câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hình chóp \(S.ABCD\) có đáy là hình bình hành tâm \(O\). Gọi \(M,N\) lần lượt là trung điểm của \(SA,AD\). Khi đó
a) \(M \in \left( {SAD} \right)\).
b) \(ON//AB\).
c) \(OM//\left( {SAC} \right)\).
d) \(\left( {OMN} \right)//\left( {SCD} \right)\).
Quảng cáo
Trả lời:

a) Có \(M \in SA \subset \left( {SAD} \right) \Rightarrow M \in \left( {SAD} \right)\).
b) Xét \(\Delta ABD\), có \(O\) là trung điểm của \(BD\), \(N\) là trung điểm của \(AD\) nên \(ON\) là đường trung bình của \(\Delta ABD\).
Suy ra \(ON//AB\).
c) Tương tự \(OM//SC\). Mà \(OM \subset \left( {SAC} \right)\) nên OM không song song (SAC).
d) Có \(OM//SC\) mà \(SC \subset \left( {SCD} \right) \Rightarrow OM//\left( {SCD} \right)\)(1).
Có \(ON//AB\) mà \(AB//CD\) nên \(ON//CD\) mà \(CD \subset \left( {SCD} \right)\). Suy ra \(ON//\left( {SCD} \right)\) (2).
Từ (1) và (2), suy ra \(\left( {OMN} \right)//\left( {SCD} \right)\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Đúng.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
PHẦN II. TỰ LUẬN
Hằng ngày, mực nước của con kênh lên xuống theo thủy triều. Độ sau \(h\) (mét) của mực nước trong kênh tại thời điểm \(t\) (giờ) \(\left( {0 \le t \le 24} \right)\) được cho bởi công thức: \(h = 2\cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{6}} \right) + 10\). Tại thời điểm nào trong ngày thì độ sâu của mực nước trong kênh bằng 12 mét.
PHẦN II. TỰ LUẬN
Hằng ngày, mực nước của con kênh lên xuống theo thủy triều. Độ sau \(h\) (mét) của mực nước trong kênh tại thời điểm \(t\) (giờ) \(\left( {0 \le t \le 24} \right)\) được cho bởi công thức: \(h = 2\cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{6}} \right) + 10\). Tại thời điểm nào trong ngày thì độ sâu của mực nước trong kênh bằng 12 mét.
Lời giải
Độ sâu của mực nước trong kênh bằng 12 mét khi \(2\cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{6}} \right) + 10 = 12\)\( \Leftrightarrow \cos \left( {\frac{{\pi t}}{{12}} + \frac{\pi }{6}} \right) = 1\)
\( \Leftrightarrow \frac{{\pi t}}{{12}} + \frac{\pi }{6} = k2\pi \)\( \Leftrightarrow t = - 2 + 24k\).
Vì \(0 \le t \le 24\) nên \(0 \le - 2 + 24k \le 24\)\( \Leftrightarrow \frac{1}{{12}} \le k \le \frac{{13}}{{12}}\) mà \(k \in \mathbb{Z}\) \( \Rightarrow k = 1\).
Do đó \(t = 22\).
Vậy vào lúc 22 giờ thì độ sau của mực nước trong kênh bằng 12 mét.
Lời giải
Ta có \(P,O\) lần lượt là trung điểm của \(SC,AC\) nên \(PO\) là đường trung bình của \(\Delta SAC\).
Suy ra \(PO//MA\). Do đó \(O\) là ảnh của điểm \(P\) qua phép chiếu song song \(MA\) trên mặt phẳng \(\left( {ABCD} \right)\).
\(A\) là ảnh của điểm \(M\) theo phương chiếu song song \(MA\) trên mặt phẳng \(\left( {ABCD} \right)\).
Gọi I là trung điểm của AD và Q là trung điểm của SD. Suy ra OI là đường trung bình của DSAD.
Suy ra \(QI//MA\). Do đó I là ảnh của Q theo phương chiếu song song MA trên mặt phẳng (ABCD).
Do đó \(\Delta AIO\) là ảnh của \(\Delta MQP\) theo phương chiếu song song MA trên mặt phẳng \(\left( {ABCD} \right)\).
Ta có \({S_{\Delta AIO}} = \frac{1}{4}{S_{\Delta ADC}} = \frac{1}{8}{S_{ABCD}} = \frac{1}{8}{.4^2} = 2\).
Trả lời: 2.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Cho hàm số \(y = f\left( x \right) = \frac{{3x + 1}}{{x - 1}}\). Khi đó
a) \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = + \infty \).
b) \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 4\).
c) Hàm số \(y = f\left( x \right)\) liên tục tại điểm \({x_0} = 1\).
d) Hàm số \(y = f\left( x \right)\) liên tục trên từng khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.