Câu hỏi:

21/10/2025 148 Lưu

Miền nghiệm của bất phương trình nào sau đây được biểu diễn bởi nửa mặt phẳng không bị gạch trong hình vẽ sau

Miền nghiệm của bất phương trình nào sau đây được biểu diễn bởi nửa mặt phẳng không bị gạch trong hình vẽ sau (ảnh 1)

A. \(2x - y \le 3\).            

B. \(x + y \ge 3\).         
C. \(x - y \ge 3\).  
D. \(x + 2y \ge 3\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Dựa vào đồ thị hàm số ta có đường thẳng đi qua hai điểm \(\left( {\frac{3}{2};0} \right)\)\(\left( {0; - 3} \right)\)\(2x - y = 3\).

Điểm \(O\left( {0;0} \right)\) thuộc miền nghiệm của bất phương trình và \(2.0 - 0 \le 3\) nên nửa mặt phẳng không gạch là miền nghiệm của bất phương trình \(2x - y \le 3\). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(\overrightarrow {GB} + \overrightarrow {GC} = 2\overrightarrow {GM} \).                                
B. \(\overrightarrow {GB} + \overrightarrow {GC} = 2\overrightarrow {GA} \).                                
C. \(\overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {GM} \).                                  
D. \(\overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow {GA} \).

Lời giải

Cho tam giác ABC, gọi M là trung điểm của BC và G là trọng tâm của tam giác ABC. Câu nào sau đây đúng? (ảnh 1)

Do M là trung điểm của BC nên ta có \(\overrightarrow {GB} + \overrightarrow {GC} = 2\overrightarrow {GM} \). Chọn A.

Lời giải

Một người A đứng ở đỉnh của một tòa nhà c (ảnh 2)

Đặt tên các điểm như hình vẽ.

Xét tam giác MDN có MN = 18 + 1,6 – 1,5 = 18,1 m.

Ta có \(\widehat {MND} = 90^\circ + 40^\circ = 130^\circ \); \(\widehat {NMD} = 90^\circ - 80^\circ = 10^\circ \); \(\widehat {NDM} = 180^\circ - 130^\circ - 10^\circ = 40^\circ \).

Áp dụng định lí sin trong tam giác \(MDN\) ta có \(\frac{{MN}}{{\sin D}} = \frac{{MD}}{{\sin N}} \Rightarrow MD = \frac{{MN}}{{\sin D}}\sin N = \frac{{18,1}}{{\sin 40^\circ }}.\sin 130^\circ \).

Xét DMDH vuông tại H có \(DH = DM.\sin \beta = \frac{{18,1}}{{\sin 40^\circ }}.\sin 130^\circ .\sin 80^\circ \approx 21,2\) m.

Do đó DE = DH + HE = 21,2 + 1,5 = 22,7 m.

Vậy chiếc diều cách mặt đất khoảng 22,7 m.

Câu 3

A. \(\mathbb{R}\backslash \left\{ 1 \right\}\).                         
B. \(\mathbb{R}\).     
C. \(\left( {1; + \infty } \right)\).              
D. \(\left[ {1; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \( - \frac{{\sqrt 5 }}{5}\).                           
B. \( - \frac{{\sqrt 5 }}{2}\).      
C. \( - \frac{{\sqrt 5 }}{3}\).                             
D. \(\frac{{\sqrt 5 }}{5}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hình chữ nhật \(ABCD\) tâm O có \(AB = 4;BC = 3\).

a) \(\overrightarrow {AB} \)\(\overrightarrow {CD} \) cùng hướng.

b) \(\left| {\overrightarrow {AB} + \overrightarrow {BC} } \right| = 7\).

c) \(\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} + \overrightarrow {MD} = 4\overrightarrow {MO} \), với M là điểm bất kì.

d) \(\overrightarrow {AB} .\overrightarrow {AC} = 16\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(40\sqrt 3 \).          
B. \(20\sqrt 3 \).          
C. 40.  
D. 20.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP