Câu hỏi:

21/10/2025 14 Lưu

Cho hàm số \(y = f\left( x \right)\) có tập xác định là \(\left[ { - 3;3} \right]\) và đồ thị của nó được biểu diễn bởi hình bên dưới. Khẳng định nào dưới đây đúng?

Dựa vào đồ thị hàm số ta có hàm số đồng biến trên khoảng \(\left( { - 3; - 1} \right)\) và \(\left( {1;3} \right)\). Chọn D. (ảnh 1)

A. Hàm số đồng biến trên khoảng \(\left( { - 3;1} \right)\)\(\left( {1;4} \right)\).    
B. Đồ thị cắt trục hoành tại ba điểm phân biệt.    
C. Hàm số nghịch biến trên khoảng \(\left( { - 2;1} \right)\).    
D. Hàm số đồng biến trên khoảng \(\left( { - 3; - 1} \right)\)\(\left( {1;3} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Dựa vào đồ thị hàm số ta có hàm số đồng biến trên khoảng \(\left( { - 3; - 1} \right)\)\(\left( {1;3} \right)\). Chọn D.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(A = \cos 0^\circ + \cos 20^\circ + \cos 40^\circ + ... + \cos 160^\circ + \cos 180^\circ \)

\[ = \left( {\cos 0^\circ + \cos 180^\circ } \right) + \left( {\cos 20^\circ + \cos 160^\circ } \right) + ... + \left( {\cos 80^\circ + \cos 100^\circ } \right)\]

\[ = \left( {\cos 0^\circ - \cos 0^\circ } \right) + \left( {\cos 20^\circ - \cos 20^\circ } \right) + ... + \left( {\cos 80^\circ - \cos 80^\circ } \right) = 0\].

Trả lời: 0.

Lời giải

a) Có \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\).

b) Diện tích tam giác ABC là \[{S_{ABC}} = \frac{1}{2}AB.AC.\sin A = \frac{1}{2}.8.5.\frac{{\sqrt 3 }}{2} = 10\sqrt 3 \].

c) Ta có \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\)\( = {8^2} + {5^2} - 2.8.5.\cos 60^\circ  = 49 \Rightarrow BC = 7\).

Áp dụng định lí sin ta có \(\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{7}{{\sqrt 3 }} = \frac{{7\sqrt 3 }}{3}\).

d) Ta có \(\cos B = \frac{{{7^2} + {8^2} - {5^2}}}{{2.7.8}} = \frac{{11}}{{14}}\).

Áp dụng định lí côsin cho tam giác ABM ta có \(A{M^2} = A{B^2} + B{M^2} - 2AB.BM.\cos B = \frac{{208}}{7} \Rightarrow AM = \frac{{4\sqrt {91} }}{7}\).

Đáp án: a) Sai;   b) Đúng;   c) Sai;   d) Đúng.

Câu 3

A. \(X = \left( {0;1} \right)\).                               
B. \(X = \left( {1; + \infty } \right)\).              
C. \(X = \left( { - 1;0} \right)\).                            
D. \(X = \left( {0; + \infty } \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\left( {0; - 1} \right)\).                                   
B. \(\left( {3;5} \right)\).                            
C. \(\left( {1;4} \right)\). 
D. \(\left( {2; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. 15.                           
B. 6.                             
C. 2 và 15.  
D. 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP