Câu hỏi:

21/10/2025 98 Lưu

B. TRẮC NGHIỆM ĐÚNG - SAI. Thí sinh trả lời từ câu 1 đến câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho tam giác ABC biết \(AB = 8;AC = 5;\widehat A = 60^\circ \).

a) \(B{C^2} = A{B^2} + A{C^2} + 2AB.AC.\cos A\).

b) Diện tích tam giác ABC bằng \(10\sqrt 3 \).

c) Bán kính đường tròn ngoại tiếp tam giác \(ABC\) bằng \(4\sqrt 3 \).

d) Điểm M thuộc cạnh BC sao cho \(BM = 4\). Khi đó \(AM = \frac{{4\sqrt {91} }}{7}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Có \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\).

b) Diện tích tam giác ABC là \[{S_{ABC}} = \frac{1}{2}AB.AC.\sin A = \frac{1}{2}.8.5.\frac{{\sqrt 3 }}{2} = 10\sqrt 3 \].

c) Ta có \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\)\( = {8^2} + {5^2} - 2.8.5.\cos 60^\circ  = 49 \Rightarrow BC = 7\).

Áp dụng định lí sin ta có \(\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{7}{{\sqrt 3 }} = \frac{{7\sqrt 3 }}{3}\).

d) Ta có \(\cos B = \frac{{{7^2} + {8^2} - {5^2}}}{{2.7.8}} = \frac{{11}}{{14}}\).

Áp dụng định lí côsin cho tam giác ABM ta có \(A{M^2} = A{B^2} + B{M^2} - 2AB.BM.\cos B = \frac{{208}}{7} \Rightarrow AM = \frac{{4\sqrt {91} }}{7}\).

Đáp án: a) Sai;   b) Đúng;   c) Sai;   d) Đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x;y\)(chiếc) là số lượng bánh nướng, bánh dẻo mà xí nghiệp cần sản xuất (\(x,y \in \mathbb{N}\)).

Khối lượng bột mỳ cần dùng là \(0,12x + 0,16y\) (kg).

Khối lượng đường cần dùng là \(0,06x + 0,04y\) (kg).

Theo đề ta có hệ \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\y \le 3x\\3x + 4y \le 15000\\3x + 2y \le 12000\end{array} \right.\).

Số tiền lãi thu được là \(T = 8x + 6y\) (nghìn đồng).

Bài toán trở thành tìm giá trị lớn nhất của \(T = 8x + 6y\) trên miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\y \le 3x\\3x + 4y \le 15000\\3x + 2y \le 12000\end{array} \right.\).

Miền nghiệm của hệ bất phương trình là miền tứ giác OABC kể cả cạnh (phần không gạch) với \(O\left( {0;0} \right),A\left( {4000;0} \right),B\left( {3000;1500} \right),C\left( {1000;3000} \right)\).

Nhân dịp Tết Dương lịch, xí nghiệp sản xuất bánh muốn sản xuất hai loại bánh: bánh nướng và bánh dẻo. Để sản xuất hai loại bánh này, xí nghiệp cần: đường, bột mì, trứng, mứt bí, lạp xưởng. (ảnh 1)

Với \(O\left( {0;0} \right)\) thì \(T = 0\).

Với \(A\left( {4000;0} \right)\) thì \(T = 32000\).

Với \(B\left( {3000;1500} \right)\) thì \(T = 33000\).

Với \(O\left( {1000;3000} \right)\) thì \(T = 26000\).

Do đó để đạt được tiền lãi cao nhất thì xí nghiệp nên sản xuất 3000 chiếc bánh nướng và 1500 chiếc bánh dẻo.

Lời giải

Hàm số có \(a = 1 > 0\) nên giá trị nhỏ nhất của hàm số là \(5\) tại \(x = - \frac{a}{2} = - 1\) \( \Rightarrow a = 2\).

Với \(a = 2\) thì hàm số có dạng \(y = {x^2} + 2x + b\).

\(y\left( { - 1} \right) = 5\) nên \(1 - 2 + b = 5 \Leftrightarrow b = 6\).

Vậy \(a + b = 8\).

Trả lời: 8.

Câu 3

A. \(\overrightarrow {AM} = \frac{1}{5}\overrightarrow {AB} \). 
B. \(\overrightarrow {MA} = - \frac{1}{4}\overrightarrow {MB} \). 
C. \(\overrightarrow {MB} = - 4\overrightarrow {MA} \). 
D. \(\overrightarrow {MB} = - \frac{4}{5}\overrightarrow {AB} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. Hàm số đồng biến trên khoảng \(\left( { - 3;1} \right)\)\(\left( {1;4} \right)\).    
B. Đồ thị cắt trục hoành tại ba điểm phân biệt.    
C. Hàm số nghịch biến trên khoảng \(\left( { - 2;1} \right)\).    
D. Hàm số đồng biến trên khoảng \(\left( { - 3; - 1} \right)\)\(\left( {1;3} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(\left( {0; - 1} \right)\).                                   
B. \(\left( {3;5} \right)\).                            
C. \(\left( {1;4} \right)\). 
D. \(\left( {2; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\overrightarrow {IA} = - \overrightarrow {IB} \). 
B. \(\overrightarrow {IA} = \overrightarrow {IB} \). 
C. \(\overrightarrow {AI} = \overrightarrow {BI} \). 
D. \(IA = IB\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP