Cho hình vuông ABCD có độ dài cạnh bằng a.
a) \(\overrightarrow {BC} + \overrightarrow {BA} = \overrightarrow {BD} \).
b) \(\overrightarrow {AB} = \overrightarrow {DC} \).
c) Độ dài của vectơ \(\overrightarrow {AB} + \overrightarrow {CB} \) bằng 2a.
d) \(\overrightarrow {BA} .\overrightarrow {DB} = {a^2}\).
Cho hình vuông ABCD có độ dài cạnh bằng a.
a) \(\overrightarrow {BC} + \overrightarrow {BA} = \overrightarrow {BD} \).
b) \(\overrightarrow {AB} = \overrightarrow {DC} \).
c) Độ dài của vectơ \(\overrightarrow {AB} + \overrightarrow {CB} \) bằng 2a.
d) \(\overrightarrow {BA} .\overrightarrow {DB} = {a^2}\).
Quảng cáo
Trả lời:

a) Theo quy tắc hình bình hành ta có \(\overrightarrow {BC} + \overrightarrow {BA} = \overrightarrow {BD} \).
b) Vì \(\overrightarrow {AB} \) và \(\overrightarrow {DC} \) cùng hướng và AB = DC nên \(\overrightarrow {AB} = \overrightarrow {DC} \).
c) Có \(\overrightarrow {AB} = \overrightarrow {DC} \) nên \(\overrightarrow {AB} + \overrightarrow {CB} = \overrightarrow {DC} + \overrightarrow {CB} = \overrightarrow {DB} \).
Vậy \(\left| {\overrightarrow {AB} + \overrightarrow {CB} } \right| = \left| {\overrightarrow {DB} } \right| = DB = a\sqrt 2 \).
d) Có \(\overrightarrow {BA} .\overrightarrow {DB} = - \overrightarrow {BA} .\overrightarrow {BD} = - \left| {\overrightarrow {BA} } \right|.\left| {\overrightarrow {BD} } \right|.\cos \left( {\overrightarrow {BA} ,\overrightarrow {BD} } \right) = - a.a\sqrt 2 .\cos 45^\circ = - {a^2}\).
Đáp án: a) Đúng; b) Đúng; c) Sai; d) Sai.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\(A = \cos 0^\circ + \cos 20^\circ + \cos 40^\circ + ... + \cos 160^\circ + \cos 180^\circ \)
\[ = \left( {\cos 0^\circ + \cos 180^\circ } \right) + \left( {\cos 20^\circ + \cos 160^\circ } \right) + ... + \left( {\cos 80^\circ + \cos 100^\circ } \right)\]
\[ = \left( {\cos 0^\circ - \cos 0^\circ } \right) + \left( {\cos 20^\circ - \cos 20^\circ } \right) + ... + \left( {\cos 80^\circ - \cos 80^\circ } \right) = 0\].
Trả lời: 0.
Lời giải
a) Có \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\).
b) Diện tích tam giác ABC là \[{S_{ABC}} = \frac{1}{2}AB.AC.\sin A = \frac{1}{2}.8.5.\frac{{\sqrt 3 }}{2} = 10\sqrt 3 \].
c) Ta có \(B{C^2} = A{B^2} + A{C^2} - 2AB.AC.\cos A\)\( = {8^2} + {5^2} - 2.8.5.\cos 60^\circ = 49 \Rightarrow BC = 7\).
Áp dụng định lí sin ta có \(\frac{{BC}}{{\sin A}} = 2R \Rightarrow R = \frac{{BC}}{{2\sin A}} = \frac{7}{{\sqrt 3 }} = \frac{{7\sqrt 3 }}{3}\).
d) Ta có \(\cos B = \frac{{{7^2} + {8^2} - {5^2}}}{{2.7.8}} = \frac{{11}}{{14}}\).
Áp dụng định lí côsin cho tam giác ABM ta có \(A{M^2} = A{B^2} + B{M^2} - 2AB.BM.\cos B = \frac{{208}}{7} \Rightarrow AM = \frac{{4\sqrt {91} }}{7}\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.