Câu hỏi:

21/10/2025 11 Lưu

Cho hình thoi ABCD cạnh \(a\)\(\widehat {BAD} = 60^\circ \). Khi đó \(\left| {\overrightarrow {AD} - \overrightarrow {AB} } \right|\) bằng    

A. \(a\sqrt 2 \).            
B. \(a\).                        
C. \(2a\).                               
D. \(\frac{{a\sqrt 3 }}{2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho hình thoi ABCD cạnh \(a\) và \(\widehat {BAD} = 60^\circ \). Khi đó \(\left| {\overrightarrow {AD}  - \overrightarrow {AB} } \right|\) bằng 	A. \(a\sqrt 2 \).	B. \(a\).	C. \(2a\).	D. \(\frac{{a\sqrt 3 }}{2}\). (ảnh 1)

Ta có \(\left| {\overrightarrow {AD} - \overrightarrow {AB} } \right| = \left| {\overrightarrow {BD} } \right|\).

Xét \(\Delta ABD\) ta có \(B{D^2} = A{B^2} + A{D^2} - 2AB.AD.\cos \widehat {BAD}\) \( = {a^2} + {a^2} - 2.a.a.\cos 60^\circ = {a^2}\)\( \Rightarrow BD = a\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x,y\left( {x \ge 0;y \ge 0} \right)\) lần lượt là số ha trồng rau và hoa.

Diện tích đất trồng canh tác không vượt quá 8 ha nên ta có \(x + y \le 8\).

Số ngày công sử dụng không vượt quá 180 ngày nên \(20x + 30y \le 180\).

Theo đề ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 8\\20x + 30y \le 180\end{array} \right.\).

Ta cần tìm \(x,y\) sao cho \(F = 3x + 4y\) lớn nhất.

Miền nghiệm của hệ bất phương trình trên là miền trong của tứ giác OABC kể cả 4 cạnh của tứ giác (phần tô màu) với \(O\left( {0;0} \right),A\left( {8;0} \right),B\left( {6;2} \right),C\left( {0;6} \right)\).

Gia đình anh Hùng dự định trồng rau và hoa trên một mảnh đất có diện tích 8 ha. Nếu trồng 1 ha rau thì cần 20 ngày công và thu lợi 3 triệu đồng. Nếu trồng 1 ha hoa thì cần 30 ngày công và thu lợi 4 triệu đồng. (ảnh 1)

Với \(O\left( {0;0} \right)\) thì F = 0.

Với \(A\left( {8;0} \right)\) thì \(F = 24\).

Với \(B\left( {6;2} \right)\) thì \(F = 26\).

Với \(C\left( {0;6} \right)\) thì \(F = 24\).

Vậy lợi nhuận cao nhất mà gia đình anh Hùng thu được từ trồng rau và hoa là 26 triệu đồng.

Trả lời: 26.

Lời giải

Đổi \(4{\rm{km/h = }}\frac{{200}}{3}\)m/phút; \({\rm{19km/h = }}\frac{{950}}{3}\)m/phút.

\(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {7^\circ + 5^\circ } \right) = 168^\circ \).

Áp dụng định lí sin ta có: \(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}} = \frac{{BC}}{{\sin A}}\).

Suy ra \(AC = \frac{{AB.\sin B}}{{\sin C}} = \frac{{850.\sin 5^\circ }}{{\sin 168^\circ }}\); \(BC = \frac{{AB.\sin A}}{{\sin C}} = \frac{{850.\sin 7^\circ }}{{\sin 168^\circ }}\).

Thời gian đi từ nhà đến trường là \(\frac{{AC}}{{\frac{{200}}{3}}} + \frac{{BC}}{{\frac{{950}}{3}}} = \frac{{3.850.\sin 5^\circ }}{{200.\sin 168^\circ }} + \frac{{3.850.\sin 7^\circ }}{{950.\sin 168^\circ }} \approx 7\) phút.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP