Câu hỏi:

21/10/2025 14 Lưu

Một doanh nghiệp tư nhân chuyên kinh doanh tủ lạnh các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh tủ lạnh Hitachi với chi phí mua vào một chiếc là 27 triệu đồng và bán ra với giá là 31 triệu đồng. Với giá bán này thì số lượng tủ lạnh mà khách hàng sẽ mua trong một năm là 600 chiếc. Nhằm mục tiêu đẩy mạnh hơn nữa lượng tiêu thụ dòng tủ lạnh đang ăn khách này, doanh nghiệp dự định giảm giá bán và ước tính rằng nếu giảm 1 triệu đồng mỗi chiếc tủ lạnh thì số lượng tủ lạnh bán ra trong một năm là sẽ tăng thêm 200 chiếc. Vậy doanh nghiệp phải định giá bán mới là bao nhiêu để sau khi đã thực hiện giảm giá, lợi nhuận thu được sẽ là cao nhất.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(x\) triệu đồng là số tiền mà doanh nghiệp A dự định giảm giá \(\left( {0 \le x \le 4} \right)\).

Khi đó:

Lợi nhuận thu được khi bán một chiếc tủ lạnh là \(31 - x - 27 = 4 - x\).

Số xe mà doanh nghiệp sẽ bán được trong một năm là \(600 + 200x\).

Lợi nhuận mà doanh nghiệp sẽ bán được trong một năm là

\(f\left( x \right) = \left( {4 - x} \right)\left( {600 + 200x} \right)\)\( \Leftrightarrow f\left( x \right) = - 200{x^2} + 200x + 2400\).

Xét hàm số \(f\left( x \right) = - 200{x^2} + 200x + 2400\) trên đoạn \(\left[ {0;4} \right]\) có bảng biến thiên

Một doanh nghiệp tư nhân chuyên kinh doanh tủ lạnh các loại. Hiện nay doanh nghiệp đang tập trung chiến lược vào kinh doanh tủ lạnh Hitachi với chi phí mua vào một chiếc là 27 triệu đồng và bán ra với giá là 31 triệu đồng. (ảnh 1)

Vậy giá trị lớn nhất của hàm số \(f\left( x \right)\) bằng 2450 triệu khi \(x = \frac{1}{2}\).

Vậy giá mới của chiếc xe là 30,5 triệu đồng thì lợi nhuân thu được là cao nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x,y\left( {x \ge 0;y \ge 0} \right)\) lần lượt là số ha trồng rau và hoa.

Diện tích đất trồng canh tác không vượt quá 8 ha nên ta có \(x + y \le 8\).

Số ngày công sử dụng không vượt quá 180 ngày nên \(20x + 30y \le 180\).

Theo đề ta có hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 8\\20x + 30y \le 180\end{array} \right.\).

Ta cần tìm \(x,y\) sao cho \(F = 3x + 4y\) lớn nhất.

Miền nghiệm của hệ bất phương trình trên là miền trong của tứ giác OABC kể cả 4 cạnh của tứ giác (phần tô màu) với \(O\left( {0;0} \right),A\left( {8;0} \right),B\left( {6;2} \right),C\left( {0;6} \right)\).

Gia đình anh Hùng dự định trồng rau và hoa trên một mảnh đất có diện tích 8 ha. Nếu trồng 1 ha rau thì cần 20 ngày công và thu lợi 3 triệu đồng. Nếu trồng 1 ha hoa thì cần 30 ngày công và thu lợi 4 triệu đồng. (ảnh 1)

Với \(O\left( {0;0} \right)\) thì F = 0.

Với \(A\left( {8;0} \right)\) thì \(F = 24\).

Với \(B\left( {6;2} \right)\) thì \(F = 26\).

Với \(C\left( {0;6} \right)\) thì \(F = 24\).

Vậy lợi nhuận cao nhất mà gia đình anh Hùng thu được từ trồng rau và hoa là 26 triệu đồng.

Trả lời: 26.

Lời giải

Đổi \(4{\rm{km/h = }}\frac{{200}}{3}\)m/phút; \({\rm{19km/h = }}\frac{{950}}{3}\)m/phút.

\(\widehat C = 180^\circ - \left( {\widehat A + \widehat B} \right) = 180^\circ - \left( {7^\circ + 5^\circ } \right) = 168^\circ \).

Áp dụng định lí sin ta có: \(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}} = \frac{{BC}}{{\sin A}}\).

Suy ra \(AC = \frac{{AB.\sin B}}{{\sin C}} = \frac{{850.\sin 5^\circ }}{{\sin 168^\circ }}\); \(BC = \frac{{AB.\sin A}}{{\sin C}} = \frac{{850.\sin 7^\circ }}{{\sin 168^\circ }}\).

Thời gian đi từ nhà đến trường là \(\frac{{AC}}{{\frac{{200}}{3}}} + \frac{{BC}}{{\frac{{950}}{3}}} = \frac{{3.850.\sin 5^\circ }}{{200.\sin 168^\circ }} + \frac{{3.850.\sin 7^\circ }}{{950.\sin 168^\circ }} \approx 7\) phút.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP