Câu hỏi:

21/10/2025 41 Lưu

Khẳng định nào dưới đây là đúng?

A. Số âm không có căn bậc 3.                             

B. \[\sqrt {0,48}  > 0,7\].

C. \[\left( {2 - \sqrt[3]{3}} \right)\left( {2 + \sqrt[3]{3}} \right) =  - 1.\] 
D. \[\sqrt {\frac{4}{3}}  > \sqrt {\frac{3}{4}} .\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

• Mọi số thực đều có căn bậc 3 nên phương án A sai.

• \[{\left( {\sqrt {0,48} } \right)^2} = 0,48 < {0,7^2} = 0,49\] nên phương án B sai.

• \[\left( {2 - \sqrt[3]{3}} \right)\left( {2 + \sqrt[3]{3}} \right) = {2^2} - {\left( {\sqrt[3]{3}} \right)^2} = 4 - 3 = 1\] nên phương án C sai.

• \[{\left( {\sqrt {\frac{3}{4}} } \right)^2} = \frac{3}{4} < {\left( {\sqrt {\frac{4}{3}} } \right)^2} = \frac{4}{3}\] nên phương án D đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Đổi \(v = 54\,\,{\rm{km}}\,{\rm{/}}\,{\rm{h}}\,\, = 15\,\,{\rm{m}}\,{\rm{/}}\,{\rm{s}}{\rm{.}}\)

Thay vào công thức \(v = 5\sqrt I ,\) ta được:

\(5\sqrt I  = 15\) suy ra \(\sqrt I  = 3\) nên \(I = 9\,\,{\rm{m}}\).

Vậy đường sóng nước để lại sau đuôi chiếc cano dài \[9\,\,{\rm{m}}.\]\(\)

Lời giải

a)Sai. Ta có \(M = \frac{{\sqrt {ab} }}{{\left| b \right|}} + \frac{a}{b} \cdot \frac{{\sqrt {ab} }}{{\left| a \right|}} = \frac{{\sqrt {ab} }}{b} + \frac{a}{b} \cdot \frac{{\sqrt {ab} }}{a} = \frac{{\sqrt {ab} }}{b} + \frac{{\sqrt {ab} }}{b} = \frac{{2\sqrt {ab} }}{b}.\)

b) Đúng. Thay \[a = 1\,;\,\,\,b = 2\] vào biểu thức \(M\), ta được: \[M = \frac{{2\sqrt {1 \cdot 2} }}{2} = \sqrt 2 .\]

c) Sai. Ta có \[b \cdot M = 1\] hay \[b \cdot \frac{{2\sqrt {ab} }}{b} = 1\] nên \[2\sqrt {ab}  = 1\], suy ra \[\sqrt {ab}  = \frac{1}{2},\] do đó \[ab = \frac{1}{4}.\]

d) Đúng. Vì \[a = b\] nên ta có \[M = \frac{{2\sqrt {{a^2}} }}{a} = \frac{{2{\rm{a}}}}{a} = 2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(9\).                 

B. \(11\).                      

C. \(3\).               

D. \(\sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\frac{{\sqrt {15} }}{{25}}\].        
B. \[\frac{{\sqrt {25} }}{{15}}\].      
C. \[\frac{{\sqrt 5 }}{{25}}\].       
D. \[\frac{{\sqrt 5 }}{{15}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP