Câu hỏi:

22/10/2025 24 Lưu

Gọi \[S\] là tập các giá trị nguyên của \[x\] thỏa mãn biểu thức \(\sqrt x  < 7\). Số phần tử của tập \[S\] là

A. 48.                        
B. 35.                 
C. 49.                 
D. 50.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Ta có: \[\sqrt x  < 7\] nên \[{\left( {\sqrt x } \right)^2} < {7^2}\] hay \[x < 49\].

Vì \[x\] nguyên và \[x \ge 0\] nên \[S = \left\{ {0\,;\,\,1\,;\,\,2\,;\,\, \ldots \,;\,\,48} \right\}\].

Do đó, tập \[S\] có 49 phần tử.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Thay \(T = 4\,;\,\,g = 9,81\) vào công thức \(T = 2\pi \sqrt {\frac{L}{g}} \), ta được:

\(4 = 2\pi  \cdot \sqrt {\frac{L}{{9,81}}} \)

\(\sqrt {\frac{L}{{9,81}}}  = \frac{2}{\pi }\)

\(\frac{L}{{9,81}} = {\left( {\frac{2}{\pi }} \right)^2}\)

\(L = 9,81 \cdot {\left( {\frac{2}{\pi }} \right)^2} \approx 4\;\,({\rm{m)}}{\rm{.}}\)

Vậy phải làm một dây đu dài \[4{\rm{ m}}.\]

Đáp án: 4.

Câu 2

A. \(3\).                          
B. \(5\).                   
C. \(\sqrt 5 \).                
D. \(3\sqrt 5 \).

Lời giải

Chọn D

Ta có \(\frac{{15}}{{\sqrt 5 }} = \frac{{15 \cdot \sqrt 5 }}{5} = 3\sqrt 5 \).

Câu 3

A. \(9\).                 

B. \(11\).                      

C. \(3\).               

D. \(\sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[0,12{\rm{ m}}.\]     
B. \[0,06{\rm{ cm}}.\] 
C. \[0,12{\rm{ cm}}{\rm{.}}\]           

D. \[0,06{\rm{ m}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[2\sqrt 3 \].               
B. \[ - 2\sqrt 3 \].        
C. \[ - 2\].              
D. \[2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP