Cho biểu thức \(P = \left( {\frac{{2x + 1}}{{\sqrt {{x^3}} - 1}} - \frac{1}{{\sqrt x - 1}}} \right):\left( {1 - \frac{{x + 4}}{{x + \sqrt x + 1}}} \right)\). Các giá trị nguyên của \(x\) để \(P\) nhận giá trị nguyên dương là
Quảng cáo
Trả lời:
Chọn D
ĐKXĐ: \[x \ge 0\,;\,\,x \ne 1\,;\,\,x \ne 9.\]
Ta có: \(P = \frac{{\sqrt x }}{{\sqrt x - 3}} = \frac{{\sqrt x - 3 + 3}}{{\sqrt x - 3}} = 1 + \frac{3}{{\sqrt x - 3}}.\)
Để \(P\) nhận giá trị là số nguyên dương thì \(\left\{ \begin{array}{l}P \in \mathbb{Z}\\P > 0\end{array} \right.\) hay \(\left\{ \begin{array}{l}\frac{3}{{\sqrt x - 3}} \in \mathbb{Z}\\1 + \frac{3}{{\sqrt x - 3}} > 0\end{array} \right.\) nên \(\left\{ \begin{array}{l}\frac{3}{{\sqrt x - 3}} \in \mathbb{Z}\\\frac{{3 + \sqrt x - 3}}{{\sqrt x - 3}} > 0\end{array} \right..\)
Khi đó \(\left( {\sqrt x - 3} \right) \in \)Ư\[\left( 3 \right)\] và \(\frac{{\sqrt x }}{{\sqrt x - 3}} > 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} (*)\)
Suy ra \(\left( {\sqrt x - 3} \right) \in \left\{ {1\,;\,\,3} \right\}\)
• Với \(\sqrt x - 3 = 1\) thì \(\sqrt x = 4\) nên \(x = 16\) (thỏa mãn (*))
• Với \(\sqrt x - 3 = 3\) thì \(\sqrt x = 6\) nên \(x = 36\) (thỏa mãn (*))
Vậy các giá trị nguyên của \(x\) để \(P\) nhận giá trị nguyên dương là \(x = 16\,;\,\;x = 36\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Đổi \(v = 54\,\,{\rm{km}}\,{\rm{/}}\,{\rm{h}}\,\, = 15\,\,{\rm{m}}\,{\rm{/}}\,{\rm{s}}{\rm{.}}\)
Thay vào công thức \(v = 5\sqrt I ,\) ta được:
\(5\sqrt I = 15\) suy ra \(\sqrt I = 3\) nên \(I = 9\,\,{\rm{m}}\).
Vậy đường sóng nước để lại sau đuôi chiếc cano dài \[9\,\,{\rm{m}}.\]\(\)
Lời giải
a)Sai. Ta có \(M = \frac{{\sqrt {ab} }}{{\left| b \right|}} + \frac{a}{b} \cdot \frac{{\sqrt {ab} }}{{\left| a \right|}} = \frac{{\sqrt {ab} }}{b} + \frac{a}{b} \cdot \frac{{\sqrt {ab} }}{a} = \frac{{\sqrt {ab} }}{b} + \frac{{\sqrt {ab} }}{b} = \frac{{2\sqrt {ab} }}{b}.\)
b) Đúng. Thay \[a = 1\,;\,\,\,b = 2\] vào biểu thức \(M\), ta được: \[M = \frac{{2\sqrt {1 \cdot 2} }}{2} = \sqrt 2 .\]
c) Sai. Ta có \[b \cdot M = 1\] hay \[b \cdot \frac{{2\sqrt {ab} }}{b} = 1\] nên \[2\sqrt {ab} = 1\], suy ra \[\sqrt {ab} = \frac{1}{2},\] do đó \[ab = \frac{1}{4}.\]
d) Đúng. Vì \[a = b\] nên ta có \[M = \frac{{2\sqrt {{a^2}} }}{a} = \frac{{2{\rm{a}}}}{a} = 2\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(9\).
B. \(11\).
C. \(3\).
D. \(\sqrt 3 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
