Cho biểu thức \(C = \left( {\frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{2}{{x - \sqrt x }}} \right):\frac{1}{{\sqrt x - 1}}\) với \(x > 0\,;\,\;x \ne 1.\) Giá trị nhỏ nhất của \(C\) là
Quảng cáo
Trả lời:
Ta có \(C = \left( {\frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{2}{{x - \sqrt x }}} \right):\frac{1}{{\sqrt x - 1}}\)
\( = \left( {\frac{{\sqrt x }}{{\sqrt x - 1}} + \frac{2}{{\sqrt x \left( {\sqrt x - 1} \right)}}} \right)\left( {\sqrt x - 1} \right)\)
\( = \frac{{x + 2}}{{\sqrt x \left( {\sqrt x - 1} \right)}} \cdot \left( {\sqrt x - 1} \right) = \frac{{x + 2}}{{\sqrt x }}.\)
Khi đó \(C = \frac{{x + 2}}{{\sqrt x }}\) với \(x > 0\,;\,\;x \ne 1.\)
Xét \(C = \frac{{x + 2}}{{\sqrt x }} = \frac{x}{{\sqrt x }} + \frac{2}{{\sqrt x }} = \sqrt x + \frac{2}{{\sqrt x }}\).
Với \(x > 0\,;\,\;x \ne 1,\) áp dụng bất đẳng thức Cauchy cho hai số dương \(\sqrt x \) và \(\frac{2}{{\sqrt x }}\), ta được:
\(C = \sqrt x + \frac{2}{{\sqrt x }} \ge 2\sqrt 2 .\)
Dấu xảy ra khi \(\sqrt x = \frac{2}{{\sqrt x }}\) hay \(x = 2\) (thỏa mãn).
Vậy giá trị nhỏ nhất của \(C\) là \(2\sqrt 2 \) khi \(x = 2\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a)Sai. Ta có \(M = \frac{{\sqrt {ab} }}{{\left| b \right|}} + \frac{a}{b} \cdot \frac{{\sqrt {ab} }}{{\left| a \right|}} = \frac{{\sqrt {ab} }}{b} + \frac{a}{b} \cdot \frac{{\sqrt {ab} }}{a} = \frac{{\sqrt {ab} }}{b} + \frac{{\sqrt {ab} }}{b} = \frac{{2\sqrt {ab} }}{b}.\)
b) Đúng. Thay \[a = 1\,;\,\,\,b = 2\] vào biểu thức \(M\), ta được: \[M = \frac{{2\sqrt {1 \cdot 2} }}{2} = \sqrt 2 .\]
c) Sai. Ta có \[b \cdot M = 1\] hay \[b \cdot \frac{{2\sqrt {ab} }}{b} = 1\] nên \[2\sqrt {ab} = 1\], suy ra \[\sqrt {ab} = \frac{1}{2},\] do đó \[ab = \frac{1}{4}.\]
d) Đúng. Vì \[a = b\] nên ta có \[M = \frac{{2\sqrt {{a^2}} }}{a} = \frac{{2{\rm{a}}}}{a} = 2\].
Lời giải
a) Đúng. Ta có \[A = \frac{1}{{\sqrt 8 + \sqrt 7 }} + \sqrt {175} - 2\sqrt 2 \]
\[ = \frac{{2\sqrt 2 - \sqrt 7 }}{{8 - 7}} + \sqrt {{5^2} \cdot 7} - 2\sqrt 2 \]
\[ = 2\sqrt 2 - \sqrt 7 + 5\sqrt 7 - 2\sqrt 2 = 4\sqrt 7 .\]
b) Sai. Ta có \[A = 4\sqrt 7 \] nên \[a = 0\,;\,\,b = - 4\]. Do đó \[a - b = 0 - \left( { - 4} \right) = 4.\]
c) Đúng. Ta có \[A\sqrt 7 - \frac{2}{{\sqrt 6 }}\]\[ = 4\sqrt 7 \cdot \sqrt 7 - \frac{{2\sqrt 6 }}{6} = 28 - \frac{{\sqrt 6 }}{3} = \frac{{84 - \sqrt 6 }}{3}.\]
d) Đúng. Ta có \[Ax - 6\sqrt 7 = 0\] hay \[4\sqrt 7 x = 6\sqrt 7 \] nên \[x = \frac{3}{2}.\]
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.