Câu hỏi:

22/10/2025 115 Lưu

Cho biểu thức \(C = \left( {\frac{{\sqrt x }}{{\sqrt x  - 1}} + \frac{2}{{x - \sqrt x }}} \right):\frac{1}{{\sqrt x  - 1}}\) với \(x > 0\,;\,\;x \ne 1.\) Giá trị nhỏ nhất của \(C\) là

A. \(C = 1\).               
B. \(C = \sqrt 2 \).       
C. \(C = 2\).                 
D. \(C = 2\sqrt 2 \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(C = \left( {\frac{{\sqrt x }}{{\sqrt x  - 1}} + \frac{2}{{x - \sqrt x }}} \right):\frac{1}{{\sqrt x  - 1}}\)

\( = \left( {\frac{{\sqrt x }}{{\sqrt x  - 1}} + \frac{2}{{\sqrt x \left( {\sqrt x  - 1} \right)}}} \right)\left( {\sqrt x  - 1} \right)\)

\( = \frac{{x + 2}}{{\sqrt x \left( {\sqrt x  - 1} \right)}} \cdot \left( {\sqrt x  - 1} \right) = \frac{{x + 2}}{{\sqrt x }}.\)

Khi đó \(C = \frac{{x + 2}}{{\sqrt x }}\) với \(x > 0\,;\,\;x \ne 1.\)

Xét \(C = \frac{{x + 2}}{{\sqrt x }} = \frac{x}{{\sqrt x }} + \frac{2}{{\sqrt x }} = \sqrt x  + \frac{2}{{\sqrt x }}\).

Với \(x > 0\,;\,\;x \ne 1,\) áp dụng bất đẳng thức Cauchy cho hai số dương \(\sqrt x \) và \(\frac{2}{{\sqrt x }}\), ta được:

\(C = \sqrt x  + \frac{2}{{\sqrt x }} \ge 2\sqrt 2 .\)

Dấu  xảy ra khi \(\sqrt x  = \frac{2}{{\sqrt x }}\) hay \(x = 2\) (thỏa mãn).

Vậy giá trị nhỏ nhất của \(C\) là \(2\sqrt 2 \) khi \(x = 2\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)Sai. Ta có \(M = \frac{{\sqrt {ab} }}{{\left| b \right|}} + \frac{a}{b} \cdot \frac{{\sqrt {ab} }}{{\left| a \right|}} = \frac{{\sqrt {ab} }}{b} + \frac{a}{b} \cdot \frac{{\sqrt {ab} }}{a} = \frac{{\sqrt {ab} }}{b} + \frac{{\sqrt {ab} }}{b} = \frac{{2\sqrt {ab} }}{b}.\)

b) Đúng. Thay \[a = 1\,;\,\,\,b = 2\] vào biểu thức \(M\), ta được: \[M = \frac{{2\sqrt {1 \cdot 2} }}{2} = \sqrt 2 .\]

c) Sai. Ta có \[b \cdot M = 1\] hay \[b \cdot \frac{{2\sqrt {ab} }}{b} = 1\] nên \[2\sqrt {ab}  = 1\], suy ra \[\sqrt {ab}  = \frac{1}{2},\] do đó \[ab = \frac{1}{4}.\]

d) Đúng. Vì \[a = b\] nên ta có \[M = \frac{{2\sqrt {{a^2}} }}{a} = \frac{{2{\rm{a}}}}{a} = 2\].

Lời giải

a) Đúng. Ta có \[A = \frac{1}{{\sqrt 8  + \sqrt 7 }} + \sqrt {175}  - 2\sqrt 2 \]

\[ = \frac{{2\sqrt 2  - \sqrt 7 }}{{8 - 7}} + \sqrt {{5^2} \cdot 7}  - 2\sqrt 2 \]

\[ = 2\sqrt 2  - \sqrt 7  + 5\sqrt 7  - 2\sqrt 2  = 4\sqrt 7 .\]

b) Sai. Ta có \[A = 4\sqrt 7 \] nên \[a = 0\,;\,\,b =  - 4\]. Do đó \[a - b = 0 - \left( { - 4} \right) = 4.\]

c) Đúng. Ta có \[A\sqrt 7  - \frac{2}{{\sqrt 6 }}\]\[ = 4\sqrt 7  \cdot \sqrt 7  - \frac{{2\sqrt 6 }}{6} = 28 - \frac{{\sqrt 6 }}{3} = \frac{{84 - \sqrt 6 }}{3}.\]  

d) Đúng. Ta có \[Ax - 6\sqrt 7  = 0\] hay \[4\sqrt 7 x = 6\sqrt 7 \] nên \[x = \frac{3}{2}.\]

Câu 3

A. \[2\sqrt 3 \].               
B. \[ - 2\sqrt 3 \].        
C. \[ - 2\].              
D. \[2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(x \le 0\).                  
B. \(x \ge 1\,;\,\,x \ne 0\).       
C. \(x \ge 0\,;\,\,x \ne 1\).      
D. \(x \ge 1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP