Cho biểu thức \[A = \sqrt {\sqrt {17} - 1} \cdot \sqrt {\sqrt {17} + 1} \] và biểu thức \[B = \sqrt {{{\left( {\sqrt 5 - 2} \right)}^2}} + \sqrt {{{\left( {\sqrt 5 - 5} \right)}^2}} .\]
a) Kết quả thực hiện phép tính biểu thức \[A\] là \[16\].
b) Kết quả thực hiện phép tính biểu thức \[B\] là \[3.\]
c) So sánh giá trị biểu thức \[A\] và biểu thức \[B\] ta được \[A > B.\]
d) Kết quả phép tính \[A - 2B\] là \[2.\]
Cho biểu thức \[A = \sqrt {\sqrt {17} - 1} \cdot \sqrt {\sqrt {17} + 1} \] và biểu thức \[B = \sqrt {{{\left( {\sqrt 5 - 2} \right)}^2}} + \sqrt {{{\left( {\sqrt 5 - 5} \right)}^2}} .\]
a) Kết quả thực hiện phép tính biểu thức \[A\] là \[16\].
b) Kết quả thực hiện phép tính biểu thức \[B\] là \[3.\]
c) So sánh giá trị biểu thức \[A\] và biểu thức \[B\] ta được \[A > B.\]
d) Kết quả phép tính \[A - 2B\] là \[2.\]
Câu hỏi trong đề: Bài tập ôn tập Toán 9 Kết nối tri thức Chương 3 có đáp án !!
Quảng cáo
Trả lời:
) Sai. Ta có \[A = \sqrt {\sqrt {17} - 1} .\sqrt {\sqrt {17} + 1} \]\[ = \sqrt {\left( {\sqrt {17} - 1} \right)\left( {\sqrt {17} + 1} \right)} = \sqrt {17 - 1} = 4\].
b) Đúng. Ta có \[B = \sqrt {{{\left( {\sqrt 5 - 2} \right)}^2}} + \sqrt {{{\left( {\sqrt 5 - 5} \right)}^2}} \]\[ = \left| {\sqrt 5 - 2} \right| + \left| {\sqrt 5 - 5} \right| = \sqrt 5 - 2 + 5 - \sqrt 5 = 3.\]
c) Đúng. Vì \[A = 4\,;\,\,B = 3\] nên \[A > B.\]
d) Sai. Ta có \[A - 2B = 4 - 2 \cdot 3 = - 2.\]
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Đúng. Ta có \[A = \frac{1}{{\sqrt 8 + \sqrt 7 }} + \sqrt {175} - 2\sqrt 2 \]
\[ = \frac{{2\sqrt 2 - \sqrt 7 }}{{8 - 7}} + \sqrt {{5^2} \cdot 7} - 2\sqrt 2 \]
\[ = 2\sqrt 2 - \sqrt 7 + 5\sqrt 7 - 2\sqrt 2 = 4\sqrt 7 .\]
b) Sai. Ta có \[A = 4\sqrt 7 \] nên \[a = 0\,;\,\,b = - 4\]. Do đó \[a - b = 0 - \left( { - 4} \right) = 4.\]
c) Đúng. Ta có \[A\sqrt 7 - \frac{2}{{\sqrt 6 }}\]\[ = 4\sqrt 7 \cdot \sqrt 7 - \frac{{2\sqrt 6 }}{6} = 28 - \frac{{\sqrt 6 }}{3} = \frac{{84 - \sqrt 6 }}{3}.\]
d) Đúng. Ta có \[Ax - 6\sqrt 7 = 0\] hay \[4\sqrt 7 x = 6\sqrt 7 \] nên \[x = \frac{3}{2}.\]
Lời giải
Thay \(d = 35\) vào công thức \(d = 7\sqrt {t - 12} \), ta được:
\(7\sqrt {t - 12} = 35\)
\(\sqrt {t - 12} = 5\)
\(t - 12 = 25\)
\(t = 37\) (năm)
Vậy băng tan cách đó: \(37 + 12 = 49\) (năm).
Đáp án: 49.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

