Cho hai biểu thức: \(N = \frac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }} + \frac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}\) và \(P = \frac{3}{{\sqrt 8 + \sqrt 5 }} + \frac{{5 - \sqrt 5 }}{{\sqrt 5 - 1}}.\)
a) Kết quả phép tính \[N\] là một số nguyên.
b) Kết quả của phép tính biểu thức \[P = 2\sqrt 2 \].
c) Giá trị của biểu thức \[N,\,\,P\] liên hệ với nhau bởi biểu thức \[N = 5P\].
d) Giá trị của biểu thức \[N,\,\,P\] là nghiệm của phương trình \[2{x^2} - 20\sqrt 2 x = 0.\]
Cho hai biểu thức: \(N = \frac{{\sqrt 3 + \sqrt 2 }}{{\sqrt 3 - \sqrt 2 }} + \frac{{\sqrt 3 - \sqrt 2 }}{{\sqrt 3 + \sqrt 2 }}\) và \(P = \frac{3}{{\sqrt 8 + \sqrt 5 }} + \frac{{5 - \sqrt 5 }}{{\sqrt 5 - 1}}.\)
a) Kết quả phép tính \[N\] là một số nguyên.
b) Kết quả của phép tính biểu thức \[P = 2\sqrt 2 \].
c) Giá trị của biểu thức \[N,\,\,P\] liên hệ với nhau bởi biểu thức \[N = 5P\].
d) Giá trị của biểu thức \[N,\,\,P\] là nghiệm của phương trình \[2{x^2} - 20\sqrt 2 x = 0.\]
Quảng cáo
Trả lời:
a) Đúng. \(N = \frac{{{{\left( {\sqrt 3 + \sqrt 2 } \right)}^2}}}{{3 - 2}} + \frac{{{{\left( {\sqrt 3 - \sqrt 2 } \right)}^2}}}{{3 - 2}} = 5 + 2\sqrt 6 + 5 - 2\sqrt 6 = 10.\)
Do đó, kết quả phép tính \[N\] là một số nguyên.
b) Đúng. \(P = \frac{3}{{\sqrt 8 + \sqrt 5 }} + \frac{{5 - \sqrt 5 }}{{\sqrt 5 - 1}} = \frac{{3\left( {\sqrt 8 - \sqrt 5 } \right)}}{{{{\left( {\sqrt 8 } \right)}^2} - {{\left( {\sqrt 5 } \right)}^2}}} + \frac{{\sqrt 5 \left( {\sqrt 5 - 1} \right)}}{{\sqrt 5 - 1}}\)
\( = \sqrt 8 - \sqrt 5 + \sqrt 5 = \sqrt 8 = 2\sqrt 2 .\)
c) Sai. Vì \[N = 10\,;\,\,\,P = 2\sqrt 2 \]nên \[N < 5P\].
d) Sai. Ta có \[2{x^2} - 20\sqrt 2 x = 0\]
\[2x\left( {x - 10\sqrt 2 } \right) = 0\]
\[x = 0\] hoặc \[x = 10\sqrt 2 \].
Vậy giá trị của biểu thức \[N,\,\,P\] không phải là nghiệm của phương trình \[2{x^2} - 20\sqrt 2 x = 0.\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a)Sai. Ta có \(M = \frac{{\sqrt {ab} }}{{\left| b \right|}} + \frac{a}{b} \cdot \frac{{\sqrt {ab} }}{{\left| a \right|}} = \frac{{\sqrt {ab} }}{b} + \frac{a}{b} \cdot \frac{{\sqrt {ab} }}{a} = \frac{{\sqrt {ab} }}{b} + \frac{{\sqrt {ab} }}{b} = \frac{{2\sqrt {ab} }}{b}.\)
b) Đúng. Thay \[a = 1\,;\,\,\,b = 2\] vào biểu thức \(M\), ta được: \[M = \frac{{2\sqrt {1 \cdot 2} }}{2} = \sqrt 2 .\]
c) Sai. Ta có \[b \cdot M = 1\] hay \[b \cdot \frac{{2\sqrt {ab} }}{b} = 1\] nên \[2\sqrt {ab} = 1\], suy ra \[\sqrt {ab} = \frac{1}{2},\] do đó \[ab = \frac{1}{4}.\]
d) Đúng. Vì \[a = b\] nên ta có \[M = \frac{{2\sqrt {{a^2}} }}{a} = \frac{{2{\rm{a}}}}{a} = 2\].
Lời giải
a) Đúng. Ta có \[A = \frac{1}{{\sqrt 8 + \sqrt 7 }} + \sqrt {175} - 2\sqrt 2 \]
\[ = \frac{{2\sqrt 2 - \sqrt 7 }}{{8 - 7}} + \sqrt {{5^2} \cdot 7} - 2\sqrt 2 \]
\[ = 2\sqrt 2 - \sqrt 7 + 5\sqrt 7 - 2\sqrt 2 = 4\sqrt 7 .\]
b) Sai. Ta có \[A = 4\sqrt 7 \] nên \[a = 0\,;\,\,b = - 4\]. Do đó \[a - b = 0 - \left( { - 4} \right) = 4.\]
c) Đúng. Ta có \[A\sqrt 7 - \frac{2}{{\sqrt 6 }}\]\[ = 4\sqrt 7 \cdot \sqrt 7 - \frac{{2\sqrt 6 }}{6} = 28 - \frac{{\sqrt 6 }}{3} = \frac{{84 - \sqrt 6 }}{3}.\]
d) Đúng. Ta có \[Ax - 6\sqrt 7 = 0\] hay \[4\sqrt 7 x = 6\sqrt 7 \] nên \[x = \frac{3}{2}.\]
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.