Câu hỏi:

22/10/2025 20 Lưu

Cho biểu thức \[B = \left( {\frac{{\sqrt x }}{{\sqrt x  + 4}} + \frac{4}{{\sqrt x  - 4}}} \right):\frac{{x + 16}}{{x + 4\sqrt x }}\] (với \[x > 0\,;\,\,x \ne 16\,).\]

a) Kết quả rút gọn của \[B\] là \[\frac{{\sqrt x }}{{\sqrt x  - 4}}\].

b) Giá trị của \[B\] khi \[x = \sqrt {3 - 2\sqrt 2 } \] là \[\frac{{2\sqrt 3  - 1}}{{11}}\].

c) Khi \[x\] là một số chính phương thì \[B\] có giá trị là một số hữu tỉ.

d) Khi \[x > 16\] thì \[B\] có giá trị là một số dương.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Với \[x > 0\,;\,\,x \ne 16\], ta có:

\[B = \left( {\frac{{\sqrt x }}{{\sqrt x  + 4}} + \frac{4}{{\sqrt x  - 4}}} \right):\frac{{x + 16}}{{x + 4\sqrt x }}\]

\[ = \frac{{\sqrt x \left( {\sqrt x  - 4} \right) + 4\left( {\sqrt x  + 4} \right)}}{{\left( {\sqrt x  + 4} \right)\left( {\sqrt x  - 4} \right)}} \cdot \frac{{\sqrt x \left( {\sqrt x  + 4} \right)}}{{x + 16}}\]

\[ = \frac{{x + 16}}{{\left( {\sqrt x  + 4} \right)\left( {\sqrt x  - 4} \right)}} \cdot \frac{{\sqrt x \left( {\sqrt x  + 4} \right)}}{{x + 16}}\]\[ = \frac{{\sqrt x }}{{\sqrt x  - 4}}.\]

b) Sai. Thay \[x = \sqrt {3 - 2\sqrt 2 } \] (TMĐK) vào biểu thức ta có:

\[B = \frac{{\sqrt {3 - 2\sqrt 2 } }}{{\sqrt {3 - 2\sqrt 2 }  - 4}} = \frac{{\sqrt {{{\left( {\sqrt 2  - 1} \right)}^2}} }}{{\sqrt {{{\left( {\sqrt 2  - 1} \right)}^2}}  - 4}} = \frac{{\sqrt 2  - 1}}{{\sqrt 2  - 1 - 4}} = \frac{{\left( {\sqrt 2  - 1} \right)\left( {\sqrt 2  + 5} \right)}}{{2 - 25}} = \frac{{3 - 4\sqrt 2 }}{{23}}.\]

c) Đúng. Với \[x > 0\,;\,\,x \ne 16\], ta có: \[B = \frac{{\sqrt x }}{{\sqrt x  - 4}}\].

Khi \[x\] là một số chính phương thì \[\sqrt x  \in \mathbb{Z}\] thì \[\sqrt x  \in \mathbb{Z}\] và \[\sqrt x  - 4 \in \mathbb{Z}.\]

Do đó \[B = \frac{{\sqrt x }}{{\sqrt x  - 4}} \in \mathbb{Q}.\]

d) Đúng. Khi \[x > 16\] thì \[\sqrt x  > 0\] và \[\sqrt x  - 4 > 0\]. Do đó \[B = \frac{{\sqrt x }}{{\sqrt x  - 4}} > 0.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Thay \(T = 4\,;\,\,g = 9,81\) vào công thức \(T = 2\pi \sqrt {\frac{L}{g}} \), ta được:

\(4 = 2\pi  \cdot \sqrt {\frac{L}{{9,81}}} \)

\(\sqrt {\frac{L}{{9,81}}}  = \frac{2}{\pi }\)

\(\frac{L}{{9,81}} = {\left( {\frac{2}{\pi }} \right)^2}\)

\(L = 9,81 \cdot {\left( {\frac{2}{\pi }} \right)^2} \approx 4\;\,({\rm{m)}}{\rm{.}}\)

Vậy phải làm một dây đu dài \[4{\rm{ m}}.\]

Đáp án: 4.

Câu 2

A. \(9\).                 

B. \(11\).                      

C. \(3\).               

D. \(\sqrt 3 \).

Lời giải

Chọn C

Ta có \[\frac{{\sqrt {99} }}{{\sqrt {11} }} = \sqrt {\frac{{99}}{{11}}}  = \sqrt 9  = 3\].

Câu 3

A. \(3\).                          
B. \(5\).                   
C. \(\sqrt 5 \).                
D. \(3\sqrt 5 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[0,12{\rm{ m}}.\]     
B. \[0,06{\rm{ cm}}.\] 
C. \[0,12{\rm{ cm}}{\rm{.}}\]           

D. \[0,06{\rm{ m}}.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \[2\sqrt 3 \].               
B. \[ - 2\sqrt 3 \].        
C. \[ - 2\].              
D. \[2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP