Câu hỏi:

22/10/2025 86 Lưu

Cho biểu thức \[B = \left( {\frac{{\sqrt x }}{{\sqrt x  + 4}} + \frac{4}{{\sqrt x  - 4}}} \right):\frac{{x + 16}}{{x + 4\sqrt x }}\] (với \[x > 0\,;\,\,x \ne 16\,).\]

a) Kết quả rút gọn của \[B\] là \[\frac{{\sqrt x }}{{\sqrt x  - 4}}\].

b) Giá trị của \[B\] khi \[x = \sqrt {3 - 2\sqrt 2 } \] là \[\frac{{2\sqrt 3  - 1}}{{11}}\].

c) Khi \[x\] là một số chính phương thì \[B\] có giá trị là một số hữu tỉ.

d) Khi \[x > 16\] thì \[B\] có giá trị là một số dương.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Với \[x > 0\,;\,\,x \ne 16\], ta có:

\[B = \left( {\frac{{\sqrt x }}{{\sqrt x  + 4}} + \frac{4}{{\sqrt x  - 4}}} \right):\frac{{x + 16}}{{x + 4\sqrt x }}\]

\[ = \frac{{\sqrt x \left( {\sqrt x  - 4} \right) + 4\left( {\sqrt x  + 4} \right)}}{{\left( {\sqrt x  + 4} \right)\left( {\sqrt x  - 4} \right)}} \cdot \frac{{\sqrt x \left( {\sqrt x  + 4} \right)}}{{x + 16}}\]

\[ = \frac{{x + 16}}{{\left( {\sqrt x  + 4} \right)\left( {\sqrt x  - 4} \right)}} \cdot \frac{{\sqrt x \left( {\sqrt x  + 4} \right)}}{{x + 16}}\]\[ = \frac{{\sqrt x }}{{\sqrt x  - 4}}.\]

b) Sai. Thay \[x = \sqrt {3 - 2\sqrt 2 } \] (TMĐK) vào biểu thức ta có:

\[B = \frac{{\sqrt {3 - 2\sqrt 2 } }}{{\sqrt {3 - 2\sqrt 2 }  - 4}} = \frac{{\sqrt {{{\left( {\sqrt 2  - 1} \right)}^2}} }}{{\sqrt {{{\left( {\sqrt 2  - 1} \right)}^2}}  - 4}} = \frac{{\sqrt 2  - 1}}{{\sqrt 2  - 1 - 4}} = \frac{{\left( {\sqrt 2  - 1} \right)\left( {\sqrt 2  + 5} \right)}}{{2 - 25}} = \frac{{3 - 4\sqrt 2 }}{{23}}.\]

c) Đúng. Với \[x > 0\,;\,\,x \ne 16\], ta có: \[B = \frac{{\sqrt x }}{{\sqrt x  - 4}}\].

Khi \[x\] là một số chính phương thì \[\sqrt x  \in \mathbb{Z}\] thì \[\sqrt x  \in \mathbb{Z}\] và \[\sqrt x  - 4 \in \mathbb{Z}.\]

Do đó \[B = \frac{{\sqrt x }}{{\sqrt x  - 4}} \in \mathbb{Q}.\]

d) Đúng. Khi \[x > 16\] thì \[\sqrt x  > 0\] và \[\sqrt x  - 4 > 0\]. Do đó \[B = \frac{{\sqrt x }}{{\sqrt x  - 4}} > 0.\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn C

Đổi \(v = 54\,\,{\rm{km}}\,{\rm{/}}\,{\rm{h}}\,\, = 15\,\,{\rm{m}}\,{\rm{/}}\,{\rm{s}}{\rm{.}}\)

Thay vào công thức \(v = 5\sqrt I ,\) ta được:

\(5\sqrt I  = 15\) suy ra \(\sqrt I  = 3\) nên \(I = 9\,\,{\rm{m}}\).

Vậy đường sóng nước để lại sau đuôi chiếc cano dài \[9\,\,{\rm{m}}.\]\(\)

Lời giải

a)Sai. Ta có \(M = \frac{{\sqrt {ab} }}{{\left| b \right|}} + \frac{a}{b} \cdot \frac{{\sqrt {ab} }}{{\left| a \right|}} = \frac{{\sqrt {ab} }}{b} + \frac{a}{b} \cdot \frac{{\sqrt {ab} }}{a} = \frac{{\sqrt {ab} }}{b} + \frac{{\sqrt {ab} }}{b} = \frac{{2\sqrt {ab} }}{b}.\)

b) Đúng. Thay \[a = 1\,;\,\,\,b = 2\] vào biểu thức \(M\), ta được: \[M = \frac{{2\sqrt {1 \cdot 2} }}{2} = \sqrt 2 .\]

c) Sai. Ta có \[b \cdot M = 1\] hay \[b \cdot \frac{{2\sqrt {ab} }}{b} = 1\] nên \[2\sqrt {ab}  = 1\], suy ra \[\sqrt {ab}  = \frac{1}{2},\] do đó \[ab = \frac{1}{4}.\]

d) Đúng. Vì \[a = b\] nên ta có \[M = \frac{{2\sqrt {{a^2}} }}{a} = \frac{{2{\rm{a}}}}{a} = 2\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(9\).                 

B. \(11\).                      

C. \(3\).               

D. \(\sqrt 3 \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\frac{{\sqrt {15} }}{{25}}\].        
B. \[\frac{{\sqrt {25} }}{{15}}\].      
C. \[\frac{{\sqrt 5 }}{{25}}\].       
D. \[\frac{{\sqrt 5 }}{{15}}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP