Cho biểu thức \(M = \sqrt {x - 1} + \frac{1}{{x - 3}} + \sqrt[3]{{x - 2}}\).
a) Điều kiện xác định của \(\sqrt[3]{{x - 2}}\) là \(x \ge 2.\)
b) Điều kiện của \(x\) để biểu thức \(M\) có nghĩa là \(x \ge 2.\)
c) Khi \(x = 1\) thì giá trị của biểu thức \(M\) là \[\frac{{ - 3}}{2}.\]
d) Khi \(\sqrt[3]{{x - 2}} = 0\) thì giá trị của biểu thức \(M\) là \(0\).
Cho biểu thức \(M = \sqrt {x - 1} + \frac{1}{{x - 3}} + \sqrt[3]{{x - 2}}\).
a) Điều kiện xác định của \(\sqrt[3]{{x - 2}}\) là \(x \ge 2.\)
b) Điều kiện của \(x\) để biểu thức \(M\) có nghĩa là \(x \ge 2.\)
c) Khi \(x = 1\) thì giá trị của biểu thức \(M\) là \[\frac{{ - 3}}{2}.\]
d) Khi \(\sqrt[3]{{x - 2}} = 0\) thì giá trị của biểu thức \(M\) là \(0\).
Quảng cáo
Trả lời:
a) Sai. Điều kiện xác định của \(\sqrt[3]{{x - 2}}\) là \(x \in \mathbb{R}.\)
b) Sai. Để biểu thức \(M\) có nghĩa khi \(x - 1 \ge 0\) và \(x - 3 \ne 0\) hay \(x \ge 1\) và \(x \ne 3\).
c) Đúng. Với \(x = 1\) (TMĐK), thay \(x = 1\) vào biểu thức \(M\), ta được:
\[M = \sqrt {1 - 1} + \frac{1}{{1 - 3}} + \sqrt[3]{{1 - 2}} = 0 + \frac{{ - 1}}{2} - 1 = \frac{{ - 3}}{2}.\]
d) Đúng. Khi \(\sqrt[3]{{x - 2}} = 0\) hay \(x = 2\) (TMĐK), thay \(x = 2\) vào biểu thức \(M\), ta được:
\(M = \sqrt {2 - 1} + \frac{1}{{2 - 3}} + 0 = 1 + \frac{1}{{ - 1}} = 0.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C
Đổi \(v = 54\,\,{\rm{km}}\,{\rm{/}}\,{\rm{h}}\,\, = 15\,\,{\rm{m}}\,{\rm{/}}\,{\rm{s}}{\rm{.}}\)
Thay vào công thức \(v = 5\sqrt I ,\) ta được:
\(5\sqrt I = 15\) suy ra \(\sqrt I = 3\) nên \(I = 9\,\,{\rm{m}}\).
Vậy đường sóng nước để lại sau đuôi chiếc cano dài \[9\,\,{\rm{m}}.\]\(\)
Lời giải
a)Sai. Ta có \(M = \frac{{\sqrt {ab} }}{{\left| b \right|}} + \frac{a}{b} \cdot \frac{{\sqrt {ab} }}{{\left| a \right|}} = \frac{{\sqrt {ab} }}{b} + \frac{a}{b} \cdot \frac{{\sqrt {ab} }}{a} = \frac{{\sqrt {ab} }}{b} + \frac{{\sqrt {ab} }}{b} = \frac{{2\sqrt {ab} }}{b}.\)
b) Đúng. Thay \[a = 1\,;\,\,\,b = 2\] vào biểu thức \(M\), ta được: \[M = \frac{{2\sqrt {1 \cdot 2} }}{2} = \sqrt 2 .\]
c) Sai. Ta có \[b \cdot M = 1\] hay \[b \cdot \frac{{2\sqrt {ab} }}{b} = 1\] nên \[2\sqrt {ab} = 1\], suy ra \[\sqrt {ab} = \frac{1}{2},\] do đó \[ab = \frac{1}{4}.\]
d) Đúng. Vì \[a = b\] nên ta có \[M = \frac{{2\sqrt {{a^2}} }}{a} = \frac{{2{\rm{a}}}}{a} = 2\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(9\).
B. \(11\).
C. \(3\).
D. \(\sqrt 3 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
