Câu hỏi:

22/10/2025 12 Lưu

Cho tam giác \(A\) có đường cao \(AH\) như hình vẽ.

Cho tam giác \(A\) có đường cao \(AH\) như hình vẽ.    Khẳng định nào đúng? A. \(\cot \widehat {CAH} = \frac{3}{4}.\)	 (ảnh 1)

Khẳng định nào đúng?

A. \(\cot \widehat {CAH} = \frac{3}{4}.\)                               

B. \(\cot \widehat {CAH} = \frac{3}{5}.\)    
C. \(\cot \widehat {CAH} = \frac{4}{3}.\)                            
D. \(\cot \widehat {CAH} = \frac{4}{5}.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

Ta có \(\widehat {CAH} = \widehat {CAB}\).

Xét \(\Delta BAC\) vuông tại \(A\)\(\cot \widehat {ACB} = \frac{{AC}}{{AB}} = \frac{4}{3}\).

Suy ra \(\cot \widehat {ACH} = \frac{4}{3}\).

Vậy chọn đáp án C.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đúng. b) Đúng.      c) Sai.          d) Đúng.

• Theo đề bài, phần ngọn bị gãy \(AB\) và phần gốc \(AC\) có tỉ lệ \(3:2\) hay \(\frac{{AB}}{{AC}} = \frac{3}{2}\), suy ra \(\frac{{AC}}{{AB}} = \frac{2}{3}\).

Xét tam giác \(ABC\) vuông tại \(C\), ta có: \(\sin \widehat {ABC} = \frac{{AC}}{{AB}} = \frac{2}{3}\). Do đó, ý a) là đúng.

• Vì \(\sin \widehat {ABC} = \frac{{AC}}{{AB}} = \frac{2}{3}\) nên \(\alpha = \widehat {ABC} \approx 41^\circ 49'.\) Do đó, ý b) là đúng.

• Xét tam giác \(ABC\) vuông tại \(C\), ta có: \(AC = BC \cdot \tan \widehat {ABC} \approx 5 \cdot \tan 41^\circ 49' \approx 4,47{\rm{\;(m)}}{\rm{.}}\)

\(\frac{{AB}}{{AC}} = \frac{3}{2}\), suy ra \(AB = \frac{3}{2}AC \approx \frac{3}{2} \cdot 4,47 = 6,705{\rm{ (m)}}{\rm{.}}\)

Độ dài phần ngọn bị gãy là độ dài đoạn thẳng \(AB\). Do đó, ý c) là sai.

• Độ dài cây ban đầu là tổng của phần ngọn bị gãy \(AB\) và phần gốc \(AC\).

Vậy chiều cao ban đầu của cây khoảng: \[4,47 + 6,705 = 11,175 \approx 11,18{\rm{\;(m)}}{\rm{.}}\]Do đó, ý d) là đúng.

Lời giải

Gọi độ dài của đoạn \[AE = x{\rm{ }}\left( {0 < x < 4} \right)\] (m), suy ra độ dài đoạn \[EB = 4 - x{\rm{ }}\left( {\rm{m}} \right).\]

Theo đề, các phần đất hình tam giác bằng nhau, nên ta có:

\[AE = BH = GC = DF = x{\rm{ }}\left( {\rm{m}} \right)\] và \[BE = CH = GD = AF = 4 - x{\rm{ }}\left( {\rm{m}} \right)\].

Áp dụng định lí Pythagore vào tam giác \[AEF\] vuông tại \(A\), có:

\[A{E^2} + A{F^2} = E{F^2}\]

\[{x^2} + {\left( {4 - x} \right)^2} = E{F^2}\]

\[2{x^2} - 8x + 16 = E{F^2}\]

Suy ra \[EF = \sqrt {2{x^2} - 8x + 16}  = \sqrt {2\left( {{x^2} - 4x + 4} \right) + 8}  = \sqrt {2{{\left( {x - 2} \right)}^2} + 8} {\rm{ }}\left( {\rm{m}} \right).\]

Do các phần hình tam giác bằng nhau nên \[FG = GH = HE = EF = \sqrt {2{{\left( {x - 2} \right)}^2} + 8} {\rm{ }}\left( {\rm{m}} \right)\].

Suy ra, chu vi \[EFGH\] là: \[EF + FG + GH + HE = 4EF = 4\sqrt {2{{\left( {x - 2} \right)}^2} + 8} {\rm{ }}\left( {\rm{m}} \right)\].

Để chu vi của tứ giác \[EFGH\] nhỏ nhất thì \[4\sqrt {2{{\left( {x - 2} \right)}^2} + 8} \] nhỏ nhất.

Với mọi \[0 < x < 4,\] ta có:

\[2{\left( {x - 2} \right)^2} \ge 0\]

\[2{\left( {x - 2} \right)^2} + 8 \ge 8\]

\[\sqrt {2{{\left( {x - 2} \right)}^2} + 8}  \ge \sqrt 8 \]

\[4\sqrt {2{{\left( {x - 2} \right)}^2} + 8}  \ge 4\sqrt 8 \]

\[4\sqrt {2{{\left( {x - 2} \right)}^2} + 8}  \ge 8\sqrt 2 \].

Do đó, chu vi của tứ giác \[EFGH\] nhỏ nhất bằng \[8\sqrt 2 {\rm{ }}\left( {\rm{m}} \right)\] khi \[x - 2 = 0\] hay \[x = 2{\rm{ }}\left( {\rm{m}} \right).\]

Vậy khoảng cách từ \[A\] đến \[E\] bằng \[2{\rm{ m}}\] thì tứ giác \[EFGH\] có chu vi nhỏ nhất.

Câu 3

A. \(d\parallel OA.\)                                
B. \(d \equiv OA.\)  
C. \(d \bot OA\) tại \(A\).                              
D. \(d \bot OA\) tại \(O.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \(x \ne - \frac{1}{2}.\)                        
B. \(x \ne - \frac{1}{2}\) \(x \ne 5.\)                      
C. \(x \ne - 5.\)       
D. \(x \ne \frac{1}{2}\)\(x \ne - 5.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP