Câu hỏi:

22/10/2025 640 Lưu

Tìm giá trị nguyên nhỏ nhất của \[x\] thỏa mãn bất phương trình \[\frac{{4x + 9}}{3} + \frac{1}{2} \ge \frac{{2x - 1}}{4}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án: −4

Ta có: \[\frac{{4x + 9}}{3} + \frac{1}{2} \ge \frac{{2x - 1}}{4}\]

   \[\frac{{4\left( {4x + 9} \right)}}{{12}} + \frac{6}{{12}} \ge \frac{{3\left( {2x - 1} \right)}}{{12}}\]

   \[4\left( {4x + 9} \right) + 6 \ge 3\left( {2x - 1} \right)\]

   \[16x + 36 + 6 \ge 6x - 3\]

   \[16x + 42 \ge 6x - 3\]

   \[16x - 6x \ge  - 3 - 42\]

   \[10x \ge  - 45\]

    \[x \ge  - \frac{9}{2}.\]

Vậy bất phương trình có nghiệm là \[x \ge  - \frac{9}{2}.\]

Do đó, giá trị nguyên nhỏ nhất thỏa mãn bất phương trình trên là \[ - 4\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

    a) Với \(a > 0,{\rm{ }}a \ne 1\), ta có:

\[A = \left( {\frac{{\sqrt a }}{2} - \frac{1}{{2\sqrt a }}} \right)\left( {\frac{{a - \sqrt a }}{{\sqrt a + 1}} - \frac{{a + \sqrt a }}{{\sqrt a - 1}}} \right)\]

   \[ = \left( {\frac{a}{{2\sqrt a }} - \frac{1}{{2\sqrt a }}} \right)\left[ {\frac{{\left( {\sqrt a - 1} \right)\sqrt a }}{{\sqrt a + 1}} - \frac{{\left( {\sqrt a + 1} \right)\sqrt a }}{{\sqrt a - 1}}} \right]\]

\[ = \frac{{a - 1}}{{2\sqrt a }}\left[ {\frac{{{{\left( {\sqrt a - 1} \right)}^2}\sqrt a }}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}} - \frac{{{{\left( {\sqrt a + 1} \right)}^2}\sqrt a }}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}} \right]\]

\[ = \frac{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}{{2\sqrt a }} \cdot \frac{{{{\left( {\sqrt a - 1} \right)}^2}\sqrt a - {{\left( {\sqrt a + 1} \right)}^2}\sqrt a }}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}\]

\[ = \frac{{{{\left( {\sqrt a - 1} \right)}^2}\sqrt a - {{\left( {\sqrt a + 1} \right)}^2}\sqrt a }}{{2\sqrt a }}\]

 \[ = \frac{{\left( {a - 2\sqrt a + 1} \right)\sqrt a - \left( {a + 2\sqrt a + 1} \right)\sqrt a }}{{2\sqrt a }}\]

\[ = \frac{{a\sqrt a - 2a + \sqrt a - a\sqrt a - 2a - \sqrt a }}{{2\sqrt a }}\]

\[ = \frac{{ - 4a}}{{2\sqrt a }}\]

\[ = - 2\sqrt a \].

Vậy \[A = - 2\sqrt a \] với \(a > 0,{\rm{ }}a \ne 1\).

b) Ta có: \(\left| {a - 1} \right| = 1\) suy ra \(a - 1 = 1\) hoặc \(a - 1 = - 1\).

Suy ra \(a = 2\) (thỏa mãn) hoặc \(a = 0\) (loại).

Thay \(a = 2\) vào \[A = - 2\sqrt a \] được \[A = - 2\sqrt 2 \].

Lời giải

Hướng dẫn giải

Đáp án: 62,8

Diện tích hình vành khuyên đó là: \(S = \pi \left( {{6^2} - {4^2}} \right) = 20\pi \approx 62,8{\rm{ }}\left( {{\rm{c}}{{\rm{m}}^2}} \right)\).