Câu hỏi:

22/10/2025 17 Lưu

TỰ LUẬN (3,0 điểm)

(1,0 điểm) Cho hai biểu thức: \[A = \left( {\frac{{\sqrt a }}{2} - \frac{1}{{2\sqrt a }}} \right)\left( {\frac{{a - \sqrt a }}{{\sqrt a + 1}} - \frac{{a + \sqrt a }}{{\sqrt a - 1}}} \right)\] với \(a > 0,{\rm{ }}a \ne 1\).

    a) Rút gọn biểu thức \(A.\)

    b) Tính giá trị của \(A\) khi \(\left| {a - 1} \right| = 1\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

    a) Với \(a > 0,{\rm{ }}a \ne 1\), ta có:

\[A = \left( {\frac{{\sqrt a }}{2} - \frac{1}{{2\sqrt a }}} \right)\left( {\frac{{a - \sqrt a }}{{\sqrt a + 1}} - \frac{{a + \sqrt a }}{{\sqrt a - 1}}} \right)\]

   \[ = \left( {\frac{a}{{2\sqrt a }} - \frac{1}{{2\sqrt a }}} \right)\left[ {\frac{{\left( {\sqrt a - 1} \right)\sqrt a }}{{\sqrt a + 1}} - \frac{{\left( {\sqrt a + 1} \right)\sqrt a }}{{\sqrt a - 1}}} \right]\]

\[ = \frac{{a - 1}}{{2\sqrt a }}\left[ {\frac{{{{\left( {\sqrt a - 1} \right)}^2}\sqrt a }}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}} - \frac{{{{\left( {\sqrt a + 1} \right)}^2}\sqrt a }}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}} \right]\]

\[ = \frac{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}{{2\sqrt a }} \cdot \frac{{{{\left( {\sqrt a - 1} \right)}^2}\sqrt a - {{\left( {\sqrt a + 1} \right)}^2}\sqrt a }}{{\left( {\sqrt a + 1} \right)\left( {\sqrt a - 1} \right)}}\]

\[ = \frac{{{{\left( {\sqrt a - 1} \right)}^2}\sqrt a - {{\left( {\sqrt a + 1} \right)}^2}\sqrt a }}{{2\sqrt a }}\]

 \[ = \frac{{\left( {a - 2\sqrt a + 1} \right)\sqrt a - \left( {a + 2\sqrt a + 1} \right)\sqrt a }}{{2\sqrt a }}\]

\[ = \frac{{a\sqrt a - 2a + \sqrt a - a\sqrt a - 2a - \sqrt a }}{{2\sqrt a }}\]

\[ = \frac{{ - 4a}}{{2\sqrt a }}\]

\[ = - 2\sqrt a \].

Vậy \[A = - 2\sqrt a \] với \(a > 0,{\rm{ }}a \ne 1\).

b) Ta có: \(\left| {a - 1} \right| = 1\) suy ra \(a - 1 = 1\) hoặc \(a - 1 = - 1\).

Suy ra \(a = 2\) (thỏa mãn) hoặc \(a = 0\) (loại).

Thay \(a = 2\) vào \[A = - 2\sqrt a \] được \[A = - 2\sqrt 2 \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: a) Đúng.  b) Sai.          c) Sai.              d) Sai.

Gọi \(x\) là vận tốc của xe tải, \(y\) là vận tốc của xe khách (\(y > x > 0\), km/h).

• Theo đề, mỗi giờ xe khách đi nhanh hơn xe tải là \(15\) km nên \(y - x = 15.\)

Do đó, ý a) là đúng.

Thời gian xe khách đã đi là: 1 giờ 40 phút + 40 phút = 2 giờ 20 phút = \(\frac{7}{3}\) giờ.

Khi hai xe gặp nhau, xe khách đi được quãng đường là: \(\frac{7}{3}y\) (km) và xe tải đi được quãng đường là \(\frac{2}{3}x\) (km).

Theo bài, quãng đường Thành phố Hồ Chí Minh – Cần Thơ dài 170 km nên ta có phương trình: \(\frac{2}{3}x + \frac{7}{3}y = 170\).

Do đó, ý b) là sai.

• Từ đó, ta có hệ phương trình biểu diễn bài toán là: \(\left\{ \begin{array}{l}y - x = 15\\\frac{2}{3}x + \frac{7}{3}y = 170\end{array} \right.\).

Do đó, ý c) là sai.

• Thế \(y = 15 + x\), thế vào phương trình \(\frac{2}{3}x + \frac{7}{3}y = 170\), ta được:

\(\frac{2}{3}x + \frac{7}{3}\left( {15 + x} \right) = 170\)

\(\frac{2}{3}x + 35 + \frac{7}{3}x = 170\)

\(3x = 135\)

\(x = 45\) (thỏa mãn).

Thay \(x = 45\) vào phương trình (1), ta được: \(y = 15 + 45 = 60\) (thỏa mãn).

Vậy vận tốc của xe tải là \(45\)km/h, vận tốc của xe khách là \(60\) km/h.

Vậy ý d) là sai.

Lời giải

Hướng dẫn giải

a) Ta có: hai tiếp tuyến \(AB,\,\,AC\) cắt nhau tại \(A\) nên \(AB = AC\) (tính chất hai tiếp tuyến cắt nhau) và \(OB = OC = R\)

Suy ra \(AO\) là đường trung trực của đoạn thẳng \(BC\).

b) Ta có: \(AB \bot OB\) (do \(AB\) là tiếp tuyến của \(\left( O \right)\) tại \(B)\)\(ON \bot OB\)

Suy ra \(ON\,{\rm{//}}\,AB\) hay \(ON\,{\rm{//}}\,AM\). (1)

Cho đường tròn \(\left( {O;R} \righ (ảnh 1)

Tương tự, ta có: \(OM\,{\rm{//}}\,AC\) hay \(OM\,{\rm{//}}\,AN\). (2)

Xét tứ giác \(AMON\)\(ON\,{\rm{//}}\,AM\)\(OM\,{\rm{//}}\,AN\) nên \(AMON\) là hình bình hành.

Ta có: hai tiếp tuyến \(AB,\,\,AC\) cắt nhau tại \(A\) nên \(AO\) là tia phân giác của \(\widehat {BAC}\) (tính chất hai tiếp tuyến cắt nhau), hay \(AO\) là tia phân giác của \(\widehat {MAN}\) (3)

Do đó hình bình hành \(AMON\) là hình thoi.

c) Ta có: \(\sin \widehat {OAC} = \frac{{OC}}{{OA}} = \frac{R}{{2R}} = \frac{1}{2},\) suy ra \(\widehat {OAC} = 30^\circ \).

Suy ra \(\widehat {MON} = \widehat {MAN} = 2 \cdot \widehat {OAC} = 60^\circ \).

Ta có \(\widehat {BOM} + \widehat {MON} = \widehat {BON} = 90^\circ \) suy ra \[\widehat {BOM} = 90^\circ - \widehat {MON} = 90^\circ - 60^\circ = 30^\circ \].

Suy ra \(\widehat {BOC} = \widehat {BOM} + \widehat {MOC} = 30^\circ + 90^\circ = 120^\circ .\)

\(\widehat {BOC}\) là góc ở tâm chắn cung nhỏ \(BC\) nên

Do đó số đo cung lớn \(BC\) là:

Vậy diện tích hình quạt giới hạn bởi các bán kính \(OB,\,\,OC\) và cung lớn \(BC\)

\(S = \frac{{240\pi {R^2}}}{{360}} = \frac{{2\pi {R^2}}}{3}\) (đơn vị diện tích).

Câu 3

A. \(0.\)                    
B. \( - 2.\)                
C. \(8.\)                    
D. \( - 4.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \(\frac{{MP}}{{MN}}.\)                       
B. \(\frac{{MN}}{{MP}}.\)                           
C. \(\frac{{MN}}{{NP}}.\)                           
D. \(\frac{{MP}}{{NP}}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP