Câu hỏi:

23/10/2025 7 Lưu

A. Trắc nghiệm

Dạng 1. Trắc nghiệm nhiều phương án lựa chọn

Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho tam giác vuông có góc \(\alpha \) là góc nhọn. Khẳng định sai

A. Tỉ số giữa cạnh đối và cạnh huyền được gọi là cosin của góc \(\alpha ,\) kí hiệu cos \(\alpha .\)
B. Tỉ số giữa cạnh kề và cạnh huyền được gọi là côsin của góc \(\alpha ,\) kí hiệu cos \(\alpha .\)
C. Tỉ số giữa cạnh đối và cạnh kề được gọi là tang của góc \(\alpha ,\) kí hiệu tan \(\alpha .\)
D. Tỉ số giữa cạnh kề và cạnh đối được gọi là côsin của góc \(\alpha ,\) kí hiệu cot \(\alpha .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Theo định nghĩa tỉ số lượng giác trong tam giác vuông: Tỉ số giữa cạnh kề và cạnh đối được gọi là côtang của góc \(\alpha ,\) kí hiệu cot \(\alpha .\)

Do đó, khẳng định D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(CH = x\,\,(\;{\rm{m}}),\,\,x > 0\).

• Xét \(\Delta HBC\) vuông tại \[H,\] ta có:

\(\tan \widehat {CBH} = \frac{{CH}}{{BH}}\) hay \(\tan 52^\circ  = \frac{x}{{BH}}\) nên \(BH = \frac{x}{{\tan 52^\circ }}\).

• Xét \(\Delta HAC\) vuông tại \[H,\] ta có:

\(\tan \widehat {CAH} = \frac{{CH}}{{AH}}\) hay \(\tan 41^\circ  = \frac{x}{{AH}}\) nên \(AH = \frac{x}{{\tan 41^\circ }}\).

Ta có: \(HB + HA = AB\)

\(\frac{x}{{\tan 52^\circ }} + \frac{x}{{\tan 41^\circ }} = 150\)

\(x\left( {\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}} \right) = 150\)

\[x = \frac{{150}}{{\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}}} \approx 78\;\,({\rm{m)}}.\]

Vậy độ cao máy bay là \[78{\rm{ m}}.\]

Đáp án: 78.

Lời giải

a) Đúng. Xét \[\Delta AHC\] vuông tại \[H\] có \[CH = AH \cdot \tan A = AH \cdot \tan 42^\circ .\]

b) Sai. Tứ giác \[ABDH\] là hình chữ nhật nên \(BD = AH.\)

Xét \[\Delta BDC\] vuông tại \[D\] có \[CD = BD \cdot \tan \widehat {CBD} = AH \cdot \tan 21^\circ 30'\].

c) Sai. Ta có \(CH - CD = AB\) nên \[AH \cdot \tan 42^\circ  - AH \cdot \tan 21^\circ 30' = 70\]

\[AH\left( {\tan 42^\circ  - \tan 21^\circ 30'} \right) = 70\]
\[AH = \frac{{70}}{{\tan 42^\circ  - \tan 21^\circ 30'}} \approx {\rm{138,21}}\,\,{\rm{(m)}}{\rm{.}}\]

Do đó \[CH = AH \cdot \tan 42^\circ  \approx 138,21 \cdot \tan 42^\circ  \approx 124\,\,{\rm{(m)}}\]O10-2024-GV154.

Vậy chiều cao của ngọn núi là \[124\,\,{\rm{m}}{\rm{.}}\]

d) Đúng. Ngọn núi cao hơn tòa nhà là: \[124 - 70 = 54\,\,({\rm{m)}}{\rm{.}}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP