Câu hỏi:

23/10/2025 75 Lưu

Treo quả cầu kim loại nhỏ vào giá thí nghiệm bằng sợi dây mảnh nhẹ không dãn. Khi quả cầu đứng yên tại vị trí cân bằng, dẫy treo có phương thẳng đứng. Kéo quả cầu khỏi vị trí cân bằng một đoạn nhỏ rồi buông ra thì quả cầu sẽ chuyển động qua lại quanh vị trí cân bằng. Khi kéo quả cầu khỏi vị trí cân bằng, giả sử tâm \[A\] của quả cầu cách \[B\] một khoảng \[AB = 60\,\,{\rm{cm}}\] và cách vị trí cân bằng một khoảng \[AH = 20\,\,{\rm{cm}}.\] Hỏi số đo góc \[\alpha \] tạo bởi sợi dây \[BA\] và vị trí cân bằng là bao nhiêu độ?

Treo quả cầu kim loại nhỏ vào giá thí nghiệm bằng sợi dây mảnh nhẹ không dãn. Khi quả cầu đứng yên tại vị trí cân bằng, dẫy treo có phương thẳng đứng.  (ảnh 1)

A. \(\alpha \approx 18^\circ .\)                       
B. \(\alpha \approx 19^\circ .\)        
C. \(\alpha \approx 20^\circ .\)                               
D. \(\alpha \approx 21^\circ .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Xét \[\Delta ABH\] vuông tại \[H\], ta có: \[\sin \alpha  = \frac{{AH}}{{AB}} = \frac{{20}}{{60}} = \frac{1}{3}\]. Do đó \[\alpha  \approx 19^\circ \].

Vậy góc tạo bởi sợi dây \[BA\] và vị trí cân bằng có số đo khoảng \[19^\circ \].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(CH = x\,\,(\;{\rm{m}}),\,\,x > 0\).

• Xét \(\Delta HBC\) vuông tại \[H,\] ta có:

\(\tan \widehat {CBH} = \frac{{CH}}{{BH}}\) hay \(\tan 52^\circ  = \frac{x}{{BH}}\) nên \(BH = \frac{x}{{\tan 52^\circ }}\).

• Xét \(\Delta HAC\) vuông tại \[H,\] ta có:

\(\tan \widehat {CAH} = \frac{{CH}}{{AH}}\) hay \(\tan 41^\circ  = \frac{x}{{AH}}\) nên \(AH = \frac{x}{{\tan 41^\circ }}\).

Ta có: \(HB + HA = AB\)

\(\frac{x}{{\tan 52^\circ }} + \frac{x}{{\tan 41^\circ }} = 150\)

\(x\left( {\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}} \right) = 150\)

\[x = \frac{{150}}{{\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}}} \approx 78\;\,({\rm{m)}}.\]

Vậy độ cao máy bay là \[78{\rm{ m}}.\]

Đáp án: 78.

Lời giải

Cho tam giác \(ABC\) có \(\widehat A (ảnh 1)

a) Sai. Xét \(\Delta ABC\) có \(\widehat A = 15^\circ \,;\,\,\widehat B = 30^\circ \) nên \(\widehat C = 180^\circ  - 15^\circ  - 30^\circ  = 135^\circ \).

Tam giác \(ABC\) có \(\widehat C\) là góc tù nên tam giác \(ABC\) là tam giác tù.

b) Đúng. Xét \(\Delta HAB\) vuông tại \(H\) có: \(AH = AB \cdot \sin 30^\circ  = 7,5\,\,({\rm{cm}}).\)

c) Đúng. Xét \(\Delta HAC\) vuông tại \(H\) có \(\widehat {ACH} = \widehat B + \widehat {CAB} = 45^\circ \) hay \(\Delta HAC\) vuông cân tại \(H.\)

d) Sai. Xét \(\Delta HAB\) vuông tại \(H\) có:\(BH = AB \cdot \cos 30^\circ  = \frac{{15\sqrt 3 }}{2}\,\,({\rm{cm}}).\)

Vì \(\Delta HAC\)vuông cân tại \(H\) nên \(CH = 7,5\,\,{\rm{cm}}{\rm{.}}\)

Khi đó, \(BC = BH - CH \approx 5,49\,\,({\rm{cm}}).\)

Vậy \({S_{ABC}} = \frac{1}{2} \cdot AH \cdot BC = \frac{1}{2} \cdot 7,5 \cdot 5,49 = 20,59\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right) \approx 21\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(\widehat {ABH} \approx 67^\circ .\)         
B. \(\widehat {ABH} \approx 69^\circ .\)                             
C. \(\widehat {ABH} \approx 66^\circ .\)                             
D. \(\widehat {ABH} \approx 68^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP