Câu hỏi:

23/10/2025 87 Lưu

Cho tam giác \(ABC\) vuông tại \(A\)\(AC = 10\,\,{\rm{cm}}\,;\,\,\widehat C = 30^\circ \). Độ dài các cạnh \(AB,\,\,BC\) lần lượt là

A. \[AB = \frac{{5\sqrt 3 }}{3}\,\,{\rm{cm}}\,;\,\,BC = \frac{{20\sqrt 3 }}{3}\,\,{\rm{cm}}\].             
B. \(AB = \frac{{10\sqrt 3 }}{3};\,\,BC = \frac{{14\sqrt 3 }}{3}\).
C. \[AB = \frac{{10\sqrt 3 }}{3}\,\,{\rm{cm}}\,;\,\,BC = 20\sqrt 3 \,\,{\rm{cm}}\].                               
D. \(AB = \frac{{10\sqrt 3 }}{3}\,\,{\rm{cm}};\,\,BC = \frac{{20\sqrt 3 }}{3}\,\,{\rm{cm}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

• \(\cos C = \frac{{AC}}{{BC}}\) nên \(BC = \frac{{AC}}{{\cos C}} = \frac{{10}}{{\frac{{\sqrt 3 }}{2}}} = \frac{{20\sqrt 3 }}{3}\,\,{\rm{cm}}\). Vậy \(AB = \frac{{10\sqrt 3 }} (ảnh 1)

Xét tam giác \(ABC\) vuông tại \(A\) có:

• \(\tan C = \frac{{AB}}{{AC}}\) nên \(AB = AC \cdot \tan C = 10\tan 30^\circ  = \frac{{10\sqrt 3 }}{3}\,\,{\rm{cm}}\);

• \(\cos C = \frac{{AC}}{{BC}}\) nên \(BC = \frac{{AC}}{{\cos C}} = \frac{{10}}{{\frac{{\sqrt 3 }}{2}}} = \frac{{20\sqrt 3 }}{3}\,\,{\rm{cm}}\).
Vậy \(AB = \frac{{10\sqrt 3 }}{3}\,\,{\rm{cm}};\,\,BC = \frac{{20\sqrt 3 }}{3}\,\,{\rm{cm}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(CH = x\,\,(\;{\rm{m}}),\,\,x > 0\).

• Xét \(\Delta HBC\) vuông tại \[H,\] ta có:

\(\tan \widehat {CBH} = \frac{{CH}}{{BH}}\) hay \(\tan 52^\circ  = \frac{x}{{BH}}\) nên \(BH = \frac{x}{{\tan 52^\circ }}\).

• Xét \(\Delta HAC\) vuông tại \[H,\] ta có:

\(\tan \widehat {CAH} = \frac{{CH}}{{AH}}\) hay \(\tan 41^\circ  = \frac{x}{{AH}}\) nên \(AH = \frac{x}{{\tan 41^\circ }}\).

Ta có: \(HB + HA = AB\)

\(\frac{x}{{\tan 52^\circ }} + \frac{x}{{\tan 41^\circ }} = 150\)

\(x\left( {\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}} \right) = 150\)

\[x = \frac{{150}}{{\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}}} \approx 78\;\,({\rm{m)}}.\]

Vậy độ cao máy bay là \[78{\rm{ m}}.\]

Đáp án: 78.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(10,06\,\,{\mathop{\rm m}\nolimits} .\)      
B. \(10,069\,\,{\mathop{\rm m}\nolimits} .\)         
C. \(10,07\,\,{\mathop{\rm m}\nolimits} .\)           
D. \(10,7\,\,{\mathop{\rm m}\nolimits} .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP