Câu hỏi:

23/10/2025 148 Lưu

Tại một thời điểm trong ngày, các tia nắng mặt trời tạo với mặt đất một góc bằng \[{\rm{55}}^\circ \], bóng của một cây xanh trên mặt đất dài \[14,25\,\,{\rm{m}}\] (hình vẽ). Chiều cao \[AH\] của cây là

Chọn A  Xét \[\Delta ABC\] vuông tạ (ảnh 1)

A. \[AH \approx 20,12\,\,{\rm{m}}\].              
B. \[AH \approx 20,35\,\,{\rm{m}}\].                           
C. \[AH \approx {\rm{11,67}}\,\,{\rm{m}}\].               
D. \[AH \approx 22,50\,\,{\rm{m}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Xét \[\Delta AHB\] vuông tại \[H\],  ta có:

\[AH = BH \cdot \tan B\] nên \[AH = 14,25 \cdot \tan 55^\circ  \approx 20,35\,\,({\rm{m}}).\]

Vậy chiều cao của cây là \[AH\] khoảng \[20,35\,\,{\rm{m}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(CH = x\,\,(\;{\rm{m}}),\,\,x > 0\).

• Xét \(\Delta HBC\) vuông tại \[H,\] ta có:

\(\tan \widehat {CBH} = \frac{{CH}}{{BH}}\) hay \(\tan 52^\circ  = \frac{x}{{BH}}\) nên \(BH = \frac{x}{{\tan 52^\circ }}\).

• Xét \(\Delta HAC\) vuông tại \[H,\] ta có:

\(\tan \widehat {CAH} = \frac{{CH}}{{AH}}\) hay \(\tan 41^\circ  = \frac{x}{{AH}}\) nên \(AH = \frac{x}{{\tan 41^\circ }}\).

Ta có: \(HB + HA = AB\)

\(\frac{x}{{\tan 52^\circ }} + \frac{x}{{\tan 41^\circ }} = 150\)

\(x\left( {\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}} \right) = 150\)

\[x = \frac{{150}}{{\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}}} \approx 78\;\,({\rm{m)}}.\]

Vậy độ cao máy bay là \[78{\rm{ m}}.\]

Đáp án: 78.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(10,06\,\,{\mathop{\rm m}\nolimits} .\)      
B. \(10,069\,\,{\mathop{\rm m}\nolimits} .\)         
C. \(10,07\,\,{\mathop{\rm m}\nolimits} .\)           
D. \(10,7\,\,{\mathop{\rm m}\nolimits} .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP