Câu hỏi:

23/10/2025 6 Lưu

Để phục vụ việc di chuyển của khách hàng giữa các tầng hàng trong siêu thị, người chủ đầu tư thường cho lắp hệ thống thang cuốn tự động. Biết rằng thang cuốn có góc nghiêng là \[35^\circ \] so với phương ngang và tốc độ truyền là \[0,65\,\,{\rm{m/s}}\], khoảng cách giữa hai tầng liên tiếp là \[4,2\,\,{\rm{m}}\]. Hỏi một người khi bước vào thang cuốn và đứng yên thì cần khoảng bao nhiêu giây để có thể di chuyển từ tầng \[1\] lên tầng \[2\]?

Vì thang máy có tốc (ảnh 1)

A. \[11,3\] giây.          
B. \[11,2\] giây.         
C. \[7,9\] giây.                          
D. \[7,8\] giây.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Vì thang máy có tốc (ảnh 2)

Độ dài thang máy từ \[1\] lên tâng \[2\] là đoạn \[AB\].

Xét \[\Delta AHB\] vuông tại \[H\] có: \[\sin B = \frac{{AH}}{{AB}}\] hay \[AB = \frac{{AH}}{{\sin B}} = \frac{{4,2}}{{\sin 35^\circ }}\,\,({\rm{m}}).\]

Vì thang máy có tốc độ truyền là \[0,65\,\,{\rm{m/s}}\] nên thời gian để một người di chuyển từ tầng \[1\] lên tầng \[2\] bằng thang cuốn là: \[\frac{{AB}}{{0,65}} = \frac{{4,2}}{{0,65 \cdot \sin 35^\circ }} \approx 11,3\] (giây).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(CH = x\,\,(\;{\rm{m}}),\,\,x > 0\).

• Xét \(\Delta HBC\) vuông tại \[H,\] ta có:

\(\tan \widehat {CBH} = \frac{{CH}}{{BH}}\) hay \(\tan 52^\circ  = \frac{x}{{BH}}\) nên \(BH = \frac{x}{{\tan 52^\circ }}\).

• Xét \(\Delta HAC\) vuông tại \[H,\] ta có:

\(\tan \widehat {CAH} = \frac{{CH}}{{AH}}\) hay \(\tan 41^\circ  = \frac{x}{{AH}}\) nên \(AH = \frac{x}{{\tan 41^\circ }}\).

Ta có: \(HB + HA = AB\)

\(\frac{x}{{\tan 52^\circ }} + \frac{x}{{\tan 41^\circ }} = 150\)

\(x\left( {\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}} \right) = 150\)

\[x = \frac{{150}}{{\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}}} \approx 78\;\,({\rm{m)}}.\]

Vậy độ cao máy bay là \[78{\rm{ m}}.\]

Đáp án: 78.

Lời giải

a) Đúng. Xét \[\Delta AHC\] vuông tại \[H\] có \[CH = AH \cdot \tan A = AH \cdot \tan 42^\circ .\]

b) Sai. Tứ giác \[ABDH\] là hình chữ nhật nên \(BD = AH.\)

Xét \[\Delta BDC\] vuông tại \[D\] có \[CD = BD \cdot \tan \widehat {CBD} = AH \cdot \tan 21^\circ 30'\].

c) Sai. Ta có \(CH - CD = AB\) nên \[AH \cdot \tan 42^\circ  - AH \cdot \tan 21^\circ 30' = 70\]

\[AH\left( {\tan 42^\circ  - \tan 21^\circ 30'} \right) = 70\]
\[AH = \frac{{70}}{{\tan 42^\circ  - \tan 21^\circ 30'}} \approx {\rm{138,21}}\,\,{\rm{(m)}}{\rm{.}}\]

Do đó \[CH = AH \cdot \tan 42^\circ  \approx 138,21 \cdot \tan 42^\circ  \approx 124\,\,{\rm{(m)}}\]O10-2024-GV154.

Vậy chiều cao của ngọn núi là \[124\,\,{\rm{m}}{\rm{.}}\]

d) Đúng. Ngọn núi cao hơn tòa nhà là: \[124 - 70 = 54\,\,({\rm{m)}}{\rm{.}}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(20\sqrt 3 \,\,{\rm{m}}.\)                          
B. \(10\sqrt 3 \,\,{\rm{m}}.\)             
C. \(10\sqrt 6 \,\,{\rm{m}}.\)             
D. \(20\sqrt 6 \,\,{\rm{m}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP