Để đo chiều cao của một bức tường Điệp dùng một quyển sách và ngắm sao cho hai cạnh bia của quyển sách hướng về vị trí cao nhất và vị trí thấp nhất của bức tường (tham khảo hình vẽ). Biết rằng Điệp đứng cách tường \(1,5\;\,{\rm{m}}\) và vị trí mắt khi quan sát cách mặt đất là \(1,2\;\,{\rm{m}}\).
Hỏi chiều cao của bức tường là bao nhiêu? (kết quả làm tròn đến hàng đơn vị).

Hỏi chiều cao của bức tường là bao nhiêu? (kết quả làm tròn đến hàng đơn vị).
Quảng cáo
Trả lời:

Chọn C
Gọi \(A,\,\,D\) là vị trí của người đứng;
\(C,\,\,D\) là vị trí bức tường phía trên và dưới cùng;
\[H\] là hình chiếu của \[A\] lên \[BC.\]
Tứ giác \[ADBH\] là hình chữ nhật nên \(BD = AH = 1,5\;\,{\rm{m}}\);
\[BH = AD = 1,2\;\,{\rm{m}}{\rm{.}}\]
Áp dụng định lí Pythagore vào tam giác \(ABD\) vuông tại \(D,\) ta có:
\(A{B^2} = A{D^2} + B{D^2} = 1,{2^2} + 1,{5^2} = 3,69\).
Suy ra \(AB = \sqrt {3,69} = 1,92\;\,({\rm{m}}).\)
Xét \(\Delta ABC\) vuông tại \[A,\] đường cao \[AH,\] ta có:
\(A{B^2} = BH \cdot BC\) hay \(BC = \frac{{A{B^2}}}{{BH}} = \frac{{3,69}}{{1,2}} \approx 3\;\,\,({\rm{m}})\).
Vậy chiều cao của bức tường là \[3{\rm{ m}}.\]
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt \(CH = x\,\,(\;{\rm{m}}),\,\,x > 0\).
• Xét \(\Delta HBC\) vuông tại \[H,\] ta có:
\(\tan \widehat {CBH} = \frac{{CH}}{{BH}}\) hay \(\tan 52^\circ = \frac{x}{{BH}}\) nên \(BH = \frac{x}{{\tan 52^\circ }}\).
• Xét \(\Delta HAC\) vuông tại \[H,\] ta có:
\(\tan \widehat {CAH} = \frac{{CH}}{{AH}}\) hay \(\tan 41^\circ = \frac{x}{{AH}}\) nên \(AH = \frac{x}{{\tan 41^\circ }}\).
Ta có: \(HB + HA = AB\)
\(\frac{x}{{\tan 52^\circ }} + \frac{x}{{\tan 41^\circ }} = 150\)
\(x\left( {\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}} \right) = 150\)
\[x = \frac{{150}}{{\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}}} \approx 78\;\,({\rm{m)}}.\]
Vậy độ cao máy bay là \[78{\rm{ m}}.\]
Đáp án: 78.
Lời giải
a) Đúng. Xét \[\Delta AHC\] vuông tại \[H\] có \[CH = AH \cdot \tan A = AH \cdot \tan 42^\circ .\]
b) Sai. Tứ giác \[ABDH\] là hình chữ nhật nên \(BD = AH.\)
Xét \[\Delta BDC\] vuông tại \[D\] có \[CD = BD \cdot \tan \widehat {CBD} = AH \cdot \tan 21^\circ 30'\].
c) Sai. Ta có \(CH - CD = AB\) nên \[AH \cdot \tan 42^\circ - AH \cdot \tan 21^\circ 30' = 70\]
\[AH\left( {\tan 42^\circ - \tan 21^\circ 30'} \right) = 70\]
\[AH = \frac{{70}}{{\tan 42^\circ - \tan 21^\circ 30'}} \approx {\rm{138,21}}\,\,{\rm{(m)}}{\rm{.}}\]
Do đó \[CH = AH \cdot \tan 42^\circ \approx 138,21 \cdot \tan 42^\circ \approx 124\,\,{\rm{(m)}}\]O10-2024-GV154.
Vậy chiều cao của ngọn núi là \[124\,\,{\rm{m}}{\rm{.}}\]
d) Đúng. Ngọn núi cao hơn tòa nhà là: \[124 - 70 = 54\,\,({\rm{m)}}{\rm{.}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.