Câu hỏi:

23/10/2025 7 Lưu

Cho tam giác \(ABC\)\(BC = 9\,\,{\rm{cm}}\,;\,\,\widehat {ABC} = 50^\circ \)\[\widehat {ACB} = 35^\circ \]. Gọi \(N\) là chân đường vuông góc hạ từ \(A\) xuống cạnh\(BC\). Độ dài \(AN\) gần nhất với giá trị nào dưới đây?

A. \(5\,\,{\rm{cm}}{\rm{.}}\)                        
B. \(4\,\,{\rm{cm}}\).        
C. \(2\,\,{\rm{cm}}\). 
D. \(3\,\,{\rm{cm}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn B

Đặt \[BN = x\,\,({\rm{cm)}}\,\, (ảnh 1)

Đặt \[BN = x\,\,({\rm{cm)}}\,\,\,\left( {0 < x < 11} \right)\] Khi đó \[NC = 11 - x\,\,({\rm{cm)}}{\rm{.}}\]

Xét tam giác \(ABN\) vuông tại \(N\) có \(AN = BN \cdot \tan B = x \cdot \tan 40^\circ \).

Xét tam giác \(ACN\) vuông tại \(N\) có \(AN = CN \cdot \tan C = \left( {11 - x} \right)\tan 30^\circ \).

Suy ra \[x\tan 40^\circ  = \left( {11 - x} \right)\tan 30^\circ \] nên \[x \approx 4,48\,\,{\rm{cm}}\] (thoả mãn).

Khi đó \(AN = BN \cdot \tan B = 4,48 \cdot \tan 40^\circ  \approx 3,76\,\,({\rm{cm)}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(CH = x\,\,(\;{\rm{m}}),\,\,x > 0\).

• Xét \(\Delta HBC\) vuông tại \[H,\] ta có:

\(\tan \widehat {CBH} = \frac{{CH}}{{BH}}\) hay \(\tan 52^\circ  = \frac{x}{{BH}}\) nên \(BH = \frac{x}{{\tan 52^\circ }}\).

• Xét \(\Delta HAC\) vuông tại \[H,\] ta có:

\(\tan \widehat {CAH} = \frac{{CH}}{{AH}}\) hay \(\tan 41^\circ  = \frac{x}{{AH}}\) nên \(AH = \frac{x}{{\tan 41^\circ }}\).

Ta có: \(HB + HA = AB\)

\(\frac{x}{{\tan 52^\circ }} + \frac{x}{{\tan 41^\circ }} = 150\)

\(x\left( {\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}} \right) = 150\)

\[x = \frac{{150}}{{\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}}} \approx 78\;\,({\rm{m)}}.\]

Vậy độ cao máy bay là \[78{\rm{ m}}.\]

Đáp án: 78.

Lời giải

a) Đúng. Xét \[\Delta AHC\] vuông tại \[H\] có \[CH = AH \cdot \tan A = AH \cdot \tan 42^\circ .\]

b) Sai. Tứ giác \[ABDH\] là hình chữ nhật nên \(BD = AH.\)

Xét \[\Delta BDC\] vuông tại \[D\] có \[CD = BD \cdot \tan \widehat {CBD} = AH \cdot \tan 21^\circ 30'\].

c) Sai. Ta có \(CH - CD = AB\) nên \[AH \cdot \tan 42^\circ  - AH \cdot \tan 21^\circ 30' = 70\]

\[AH\left( {\tan 42^\circ  - \tan 21^\circ 30'} \right) = 70\]
\[AH = \frac{{70}}{{\tan 42^\circ  - \tan 21^\circ 30'}} \approx {\rm{138,21}}\,\,{\rm{(m)}}{\rm{.}}\]

Do đó \[CH = AH \cdot \tan 42^\circ  \approx 138,21 \cdot \tan 42^\circ  \approx 124\,\,{\rm{(m)}}\]O10-2024-GV154.

Vậy chiều cao của ngọn núi là \[124\,\,{\rm{m}}{\rm{.}}\]

d) Đúng. Ngọn núi cao hơn tòa nhà là: \[124 - 70 = 54\,\,({\rm{m)}}{\rm{.}}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(20\sqrt 3 \,\,{\rm{m}}.\)                          
B. \(10\sqrt 3 \,\,{\rm{m}}.\)             
C. \(10\sqrt 6 \,\,{\rm{m}}.\)             
D. \(20\sqrt 6 \,\,{\rm{m}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP