Câu hỏi:

23/10/2025 17 Lưu

Một người đứng cách chân tháp \[13,65{\rm{ m}}\] nhìn lên đỉnh tháp với phương nhìn hợp với phương nằm ngang một góc bằng \[{\rm{58}}^\circ \]. Biết mắt của người đó cách chân của mình một khoảng \[1,55{\rm{ m}}{\rm{.}}\] Hỏi tháp cao bao nhiêu mét? (làm tròn đến chữ số thập phân thứ hai)

Gắn dữ kiện của bài toán vào m (ảnh 1)

A. \[23,38\,\,{\rm{m}}\].                               
B. \[21,84\,\,{\rm{m}}\].   
C. \[23,39\,\,{\rm{m}}\].   
D. \[21,85\,\,{\rm{m}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Gắn dữ kiện của bài toán vào m (ảnh 2)

Gắn dữ kiện của bài toán vào mô hình Toán học như trên hình vẽ.

Gọi \[N\] là hình chiếu của \[M\] lên đoạn \[AH\].

Vì \[MN\] và \[BH\] là các đoạn thẳng nằm trên phương ngang; \[MB\] và \[NH\] nằm trên phương thẳng đứng nên tứ giác \[MBHN\] là hình chữ nhật.

Suy ra \[NH = MB = 1,55\,\,{\rm{m}}\]; \[MN = BH = 13,65\,\,{\rm{m}}\].

Tam giác \[ANM\] vuông tại \[N\] nên \[AN = MN \cdot \tan M.\]

Ta có:\[AH = AN + NH\]suy ra \[AH = MN \cdot \tan M + NH\].

Do đó \[AH = 13,65 \cdot \tan 58^\circ  + 1,55 \approx 23,39\,\,({\rm{m}}).\]

Vậy chiều cao của tháp khoảng \[23,39\,\,{\rm{m}}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(CH = x\,\,(\;{\rm{m}}),\,\,x > 0\).

• Xét \(\Delta HBC\) vuông tại \[H,\] ta có:

\(\tan \widehat {CBH} = \frac{{CH}}{{BH}}\) hay \(\tan 52^\circ  = \frac{x}{{BH}}\) nên \(BH = \frac{x}{{\tan 52^\circ }}\).

• Xét \(\Delta HAC\) vuông tại \[H,\] ta có:

\(\tan \widehat {CAH} = \frac{{CH}}{{AH}}\) hay \(\tan 41^\circ  = \frac{x}{{AH}}\) nên \(AH = \frac{x}{{\tan 41^\circ }}\).

Ta có: \(HB + HA = AB\)

\(\frac{x}{{\tan 52^\circ }} + \frac{x}{{\tan 41^\circ }} = 150\)

\(x\left( {\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}} \right) = 150\)

\[x = \frac{{150}}{{\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}}} \approx 78\;\,({\rm{m)}}.\]

Vậy độ cao máy bay là \[78{\rm{ m}}.\]

Đáp án: 78.

Lời giải

a) Đúng. Xét \[\Delta AHC\] vuông tại \[H\] có \[CH = AH \cdot \tan A = AH \cdot \tan 42^\circ .\]

b) Sai. Tứ giác \[ABDH\] là hình chữ nhật nên \(BD = AH.\)

Xét \[\Delta BDC\] vuông tại \[D\] có \[CD = BD \cdot \tan \widehat {CBD} = AH \cdot \tan 21^\circ 30'\].

c) Sai. Ta có \(CH - CD = AB\) nên \[AH \cdot \tan 42^\circ  - AH \cdot \tan 21^\circ 30' = 70\]

\[AH\left( {\tan 42^\circ  - \tan 21^\circ 30'} \right) = 70\]
\[AH = \frac{{70}}{{\tan 42^\circ  - \tan 21^\circ 30'}} \approx {\rm{138,21}}\,\,{\rm{(m)}}{\rm{.}}\]

Do đó \[CH = AH \cdot \tan 42^\circ  \approx 138,21 \cdot \tan 42^\circ  \approx 124\,\,{\rm{(m)}}\]O10-2024-GV154.

Vậy chiều cao của ngọn núi là \[124\,\,{\rm{m}}{\rm{.}}\]

d) Đúng. Ngọn núi cao hơn tòa nhà là: \[124 - 70 = 54\,\,({\rm{m)}}{\rm{.}}\]

Câu 6

A. \(20\sqrt 3 \,\,{\rm{m}}.\)                          
B. \(10\sqrt 3 \,\,{\rm{m}}.\)             
C. \(10\sqrt 6 \,\,{\rm{m}}.\)             
D. \(20\sqrt 6 \,\,{\rm{m}}{\rm{.}}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP