Cho tam giác \(ABC\) nhọn, hai đường cao \(AD,\,\,BE\) cắt nhau tại \(H\). Biết \(HD:HA = 1:2\).
a) \(BD = AD \cdot \tan B\).
b) \(AD = CD \cdot \tan C\).
c) \(BD \cdot CD = DH \cdot AD\).
d) \(\tan B \cdot \tan C = 3\).
Cho tam giác \(ABC\) nhọn, hai đường cao \(AD,\,\,BE\) cắt nhau tại \(H\). Biết \(HD:HA = 1:2\).
a) \(BD = AD \cdot \tan B\).
b) \(AD = CD \cdot \tan C\).
c) \(BD \cdot CD = DH \cdot AD\).
d) \(\tan B \cdot \tan C = 3\).
Quảng cáo
Trả lời:

a) Sai. Áp dụng hệ thức giữa cạnh và góc trong \(\Delta ABD\) vuông tại \(D,\) ta có \(BD = AD \cdot \cot B.\)
b) Đúng. Áp dụng hệ thức giữa cạnh và góc trong \(\Delta ACD\) vuông tại \(D,\) ta có \(AD = CD \cdot \tan C.\)
c) Đúng. Xét \(\Delta BDH\) và \(\Delta ADC\) có: O10-2024-GV154
\(\widehat {HBD} = \widehat {CAD}\) (cùng phụ với \(\widehat {ACB}\));
\(\widehat {HDB} = \widehat {ADC} = 90^\circ \).
Do đó .
Suy ra \(\frac{{DH}}{{DC}} = \frac{{BD}}{{AD}}\) nên \(BD \cdot CD = DH \cdot AD\).
d) Đúng. Theo giả thiết: \(\frac{{HD}}{{AH}} = \frac{1}{2}\)O10-2024-GV154 hay \(\frac{{HD}}{{AH + HD}} = \frac{{HD}}{{AD}} = \frac{1}{3}\) nên \(AD = 3HD.\)
Do đó \(\tan B \cdot \tan C = \frac{{3HD}}{{DH}} = 3\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt \(CH = x\,\,(\;{\rm{m}}),\,\,x > 0\).
• Xét \(\Delta HBC\) vuông tại \[H,\] ta có:
\(\tan \widehat {CBH} = \frac{{CH}}{{BH}}\) hay \(\tan 52^\circ = \frac{x}{{BH}}\) nên \(BH = \frac{x}{{\tan 52^\circ }}\).
• Xét \(\Delta HAC\) vuông tại \[H,\] ta có:
\(\tan \widehat {CAH} = \frac{{CH}}{{AH}}\) hay \(\tan 41^\circ = \frac{x}{{AH}}\) nên \(AH = \frac{x}{{\tan 41^\circ }}\).
Ta có: \(HB + HA = AB\)
\(\frac{x}{{\tan 52^\circ }} + \frac{x}{{\tan 41^\circ }} = 150\)
\(x\left( {\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}} \right) = 150\)
\[x = \frac{{150}}{{\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}}} \approx 78\;\,({\rm{m)}}.\]
Vậy độ cao máy bay là \[78{\rm{ m}}.\]
Đáp án: 78.
Lời giải

a) Sai. Xét \(\Delta ABC\) có \(\widehat A = 15^\circ \,;\,\,\widehat B = 30^\circ \) nên \(\widehat C = 180^\circ - 15^\circ - 30^\circ = 135^\circ \).
Tam giác \(ABC\) có \(\widehat C\) là góc tù nên tam giác \(ABC\) là tam giác tù.
b) Đúng. Xét \(\Delta HAB\) vuông tại \(H\) có: \(AH = AB \cdot \sin 30^\circ = 7,5\,\,({\rm{cm}}).\)
c) Đúng. Xét \(\Delta HAC\) vuông tại \(H\) có \(\widehat {ACH} = \widehat B + \widehat {CAB} = 45^\circ \) hay \(\Delta HAC\) vuông cân tại \(H.\)
d) Sai. Xét \(\Delta HAB\) vuông tại \(H\) có:\(BH = AB \cdot \cos 30^\circ = \frac{{15\sqrt 3 }}{2}\,\,({\rm{cm}}).\)
Vì \(\Delta HAC\)vuông cân tại \(H\) nên \(CH = 7,5\,\,{\rm{cm}}{\rm{.}}\)
Khi đó, \(BC = BH - CH \approx 5,49\,\,({\rm{cm}}).\)
Vậy \({S_{ABC}} = \frac{1}{2} \cdot AH \cdot BC = \frac{1}{2} \cdot 7,5 \cdot 5,49 = 20,59\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right) \approx 21\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




![Chọn D Ta có, góc tạo bởi cạnh \[AB\] và phương năm ngang trên mặt đất là \[\widehat {ABH}\]. Xét tam giác \[ABH\] vuôn (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/8-1761181578.png)
