Câu hỏi:

23/10/2025 10 Lưu

Cho tam giác \[ABC\] vuông tại \[C\] có \(AC = \frac{5}{{13}}AB\).

a) \(\cos A = \frac{5}{{13}}\).

b) \(\tan B = \frac{{12}}{5}\).

c) \(\sin A + \sin B = \frac{{17}}{{13}}\).

d) \(\cot A + \cot B = \frac{{37}}{{60}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cho tam giác \[ABC\] vuông tại \[C (ảnh 1)

a) Đúng. Ta có \(AC = \frac{5}{{13}}AB\) nên \(\frac{{AC}}{{AB}} = \frac{5}{{13}}\). Do đó \(\cos A = \frac{{AC}}{{AB}} = \frac{5}{{13}}\).

b) Sai. Đặt \[AC = 5x\,;{\rm{ }}AB = 13x\,\,\left( {x > 0} \right).\]

Áp dụng định lí Pythagore vào tam giác \[ABC\] vuông tại \[C\], ta có BC2=AB2AC2=13x25x2=144x2  suy ra BC=12x

Do đó, \(\tan B = \frac{{AC}}{{BC}} = \frac{{5x}}{{12x}} = \frac{5}{{12}}\).

c) Đúng. Ta có \(\sin A + \sin B = \frac{5}{{13}} + \frac{{12}}{{13}} = \frac{{17}}{{13}}\).

d) Sai. Ta có \(\cot A + \cot B = \frac{5}{{12}} + \frac{{12}}{5} = \frac{{169}}{{60}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đặt \(CH = x\,\,(\;{\rm{m}}),\,\,x > 0\).

• Xét \(\Delta HBC\) vuông tại \[H,\] ta có:

\(\tan \widehat {CBH} = \frac{{CH}}{{BH}}\) hay \(\tan 52^\circ  = \frac{x}{{BH}}\) nên \(BH = \frac{x}{{\tan 52^\circ }}\).

• Xét \(\Delta HAC\) vuông tại \[H,\] ta có:

\(\tan \widehat {CAH} = \frac{{CH}}{{AH}}\) hay \(\tan 41^\circ  = \frac{x}{{AH}}\) nên \(AH = \frac{x}{{\tan 41^\circ }}\).

Ta có: \(HB + HA = AB\)

\(\frac{x}{{\tan 52^\circ }} + \frac{x}{{\tan 41^\circ }} = 150\)

\(x\left( {\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}} \right) = 150\)

\[x = \frac{{150}}{{\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}}} \approx 78\;\,({\rm{m)}}.\]

Vậy độ cao máy bay là \[78{\rm{ m}}.\]

Đáp án: 78.

Lời giải

a) Đúng. Xét \[\Delta AHC\] vuông tại \[H\] có \[CH = AH \cdot \tan A = AH \cdot \tan 42^\circ .\]

b) Sai. Tứ giác \[ABDH\] là hình chữ nhật nên \(BD = AH.\)

Xét \[\Delta BDC\] vuông tại \[D\] có \[CD = BD \cdot \tan \widehat {CBD} = AH \cdot \tan 21^\circ 30'\].

c) Sai. Ta có \(CH - CD = AB\) nên \[AH \cdot \tan 42^\circ  - AH \cdot \tan 21^\circ 30' = 70\]

\[AH\left( {\tan 42^\circ  - \tan 21^\circ 30'} \right) = 70\]
\[AH = \frac{{70}}{{\tan 42^\circ  - \tan 21^\circ 30'}} \approx {\rm{138,21}}\,\,{\rm{(m)}}{\rm{.}}\]

Do đó \[CH = AH \cdot \tan 42^\circ  \approx 138,21 \cdot \tan 42^\circ  \approx 124\,\,{\rm{(m)}}\]O10-2024-GV154.

Vậy chiều cao của ngọn núi là \[124\,\,{\rm{m}}{\rm{.}}\]

d) Đúng. Ngọn núi cao hơn tòa nhà là: \[124 - 70 = 54\,\,({\rm{m)}}{\rm{.}}\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP