Hai xe máy khởi hành cùng lúc tại A và đi theo hai hướng tạo thành góc \(60^\circ \) (như hình vẽ). Xe thứ nhất đi với vận tốc trung bình \(40\;\,{\rm{km}}/{\rm{h}}\), xe thứ hai đi với vận tốc trung bình \(50\,\;{\rm{km}}/{\rm{h}}\). Hỏi sau khi khởi hành 150 phút, hai xe cách nhau bao nhiêu km? (kết quả làm tròn đến hàng đơn vị)

Quảng cáo
Trả lời:

Đổi 150 phút \( = \frac{{150}}{{60}} = 2,5\) giờ.
Quãng đường xe thứ nhất đi được sau \[2,5\] giờ là: \(AB = 40 \cdot 2,5 = 100\;\,\,({\rm{km}}).\)
Quãng đường xe thứ hai đi được sau \(2,5\) giờ là: \(AC = 50 \cdot 2,5 = 125\;\,\,({\rm{km}})\).
Xét \(\Delta ABH\) vuông tại \(H\), ta có:
\(\cos A = \frac{{AH}}{{AB}}\) hay \(\cos 60^\circ = \frac{{AH}}{{100}}\) nên \(AH = 100 \cdot \cos 60^\circ = 50\;\,\,({\rm{km)}}\).
Khi đó \(HC = AC - AH = 125 - 50 = 75\,\,({\rm{km}}).\)
\(BH = \sqrt {A{B^2} - A{H^2}} = \sqrt {{{100}^2} - {{50}^2}} \approx 86,6\;\,\,({\rm{km}}).\) (theo định lí Pythagore)
Xét \(\Delta BHC\) vuông tại \(H\), ta có:
\(BC = \sqrt {B{H^2} + H{C^2}} = \sqrt {86,{6^2} + {{75}^2}} \approx 115\;\,\,({\rm{km}})\). (theo định lí Pythagore)
Vậy sau khi khởi hành 150 phút, hai xe cách nhau \(115\;\,{\rm{km}}\).
Đáp án: 115.
Hot: 500+ Đề thi vào 10 file word các Sở Hà Nội, TP Hồ Chí Minh có đáp án 2025 (chỉ từ 100k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đặt \(CH = x\,\,(\;{\rm{m}}),\,\,x > 0\).
• Xét \(\Delta HBC\) vuông tại \[H,\] ta có:
\(\tan \widehat {CBH} = \frac{{CH}}{{BH}}\) hay \(\tan 52^\circ = \frac{x}{{BH}}\) nên \(BH = \frac{x}{{\tan 52^\circ }}\).
• Xét \(\Delta HAC\) vuông tại \[H,\] ta có:
\(\tan \widehat {CAH} = \frac{{CH}}{{AH}}\) hay \(\tan 41^\circ = \frac{x}{{AH}}\) nên \(AH = \frac{x}{{\tan 41^\circ }}\).
Ta có: \(HB + HA = AB\)
\(\frac{x}{{\tan 52^\circ }} + \frac{x}{{\tan 41^\circ }} = 150\)
\(x\left( {\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}} \right) = 150\)
\[x = \frac{{150}}{{\frac{1}{{\tan 52^\circ }} + \frac{1}{{\tan 41^\circ }}}} \approx 78\;\,({\rm{m)}}.\]
Vậy độ cao máy bay là \[78{\rm{ m}}.\]
Đáp án: 78.
Lời giải
a) Đúng. Xét \[\Delta AHC\] vuông tại \[H\] có \[CH = AH \cdot \tan A = AH \cdot \tan 42^\circ .\]
b) Sai. Tứ giác \[ABDH\] là hình chữ nhật nên \(BD = AH.\)
Xét \[\Delta BDC\] vuông tại \[D\] có \[CD = BD \cdot \tan \widehat {CBD} = AH \cdot \tan 21^\circ 30'\].
c) Sai. Ta có \(CH - CD = AB\) nên \[AH \cdot \tan 42^\circ - AH \cdot \tan 21^\circ 30' = 70\]
\[AH\left( {\tan 42^\circ - \tan 21^\circ 30'} \right) = 70\]
\[AH = \frac{{70}}{{\tan 42^\circ - \tan 21^\circ 30'}} \approx {\rm{138,21}}\,\,{\rm{(m)}}{\rm{.}}\]
Do đó \[CH = AH \cdot \tan 42^\circ \approx 138,21 \cdot \tan 42^\circ \approx 124\,\,{\rm{(m)}}\]O10-2024-GV154.
Vậy chiều cao của ngọn núi là \[124\,\,{\rm{m}}{\rm{.}}\]
d) Đúng. Ngọn núi cao hơn tòa nhà là: \[124 - 70 = 54\,\,({\rm{m)}}{\rm{.}}\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.