Một quả bóng bay hình cầu có phương trình \({x^2} + {y^2} + {\left( {z - 2} \right)^2} = 1\) trong hệ trục tọa độ Oxyz (với mặt phẳng (Oxy) là mặt đất, đơn vị trên trục là mét). Giả sử một chú chim bay lên cao và đậu lên đỉnh của quả bóng bay (xem hình vẽ minh họa). Hỏi chú chim cách mặt đất bao nhiêu mét?

Quảng cáo
Trả lời:
Mặt cầu \({x^2} + {y^2} + {\left( {z - 2} \right)^2} = 1\) có tâm \(I\left( {0;0;2} \right),R = 1\).
Ta có \(d\left( {I,\left( {Oxy} \right)} \right) = 2\).
Do đó chú chim cách mặt đất: 2 + 1 = 3 mét.
Trả lời: 3.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\(\left( {{S_1}} \right):{x^2} + {y^2} + {z^2} + 2x - 4y - 2 = 0\).
\(\left( {{S_2}} \right):{x^2} + {y^2} + {z^2} + 6z - 2 = 0\).
\(\left( {{S_3}} \right):{x^2} + {y^2} + {z^2} + 6z + 9 = 0\).
\(\left( {{S_4}} \right):{x^2} + {y^2} + {z^2} + 2x - 4y + 6z - 2 = 0\).
Lời giải
Đáp án đúng: B
\(\left( {{S_2}} \right):{x^2} + {y^2} + {z^2} + 6z - 2 = 0\)\( \Leftrightarrow {x^2} + {y^2} + {\left( {z + 3} \right)^2} = 11\).
Mặt cầu có tâm \(I\left( {0;0; - 3} \right) \in Oz\).
Câu 2
\(I\left( { - 1;2; - 3} \right),R = 4\).
\(I\left( {1; - 2;3} \right),R = 4\).
\(I\left( { - 1;2; - 3} \right),R = 2\sqrt 3 \).
\(I\left( {1; - 2;3} \right),R = 2\sqrt 3 \).
Lời giải
Đáp án đúng: A
\(\left( S \right):{x^2} + {y^2} + {z^2} + 2x - 4y + 6z - 2 = 0\)\( \Leftrightarrow {\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = 16\).
Mặt cầu (S) có \(I\left( { - 1;2; - 3} \right),R = 4\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
I (−1; 2; 1) và R = 3.
I(1; −2; −1) và R = 3.
I(−1; 2; 1) và R = 9.
I(1; −2; −1) và R = 9.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = \sqrt {53} \).
\({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = 53\).
\({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 53\).
\({\left( {x + 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z + 3} \right)^2} = 53\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\({x^2} + {y^2} + {z^2} - 2x - 4y - 6z + 10 = 0\).
\({x^2} + {y^2} + {z^2} - 2x - 4y - 6z - 10 = 0\).
\({x^2} + {y^2} + {z^2} + 2x + 4y + 6z + 10 = 0\).
\({x^2} + {y^2} + {z^2} + 2x + 4y + 6z - 10 = 0\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.