CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \( - 1 \le \cos \left( {\frac{\pi }{4} + \frac{{\pi t}}{{50}}} \right) \le 1 \Leftrightarrow 100 \le 550 + 450\cos \left( {\frac{\pi }{4} + \frac{{\pi t}}{{50}}} \right) \le 1000 \Leftrightarrow 100 \le h \le 1000\)

Suy ra, \(h\) đạt giá trị lớn nhất bằng \(1000\) khi \(\cos \left( {\frac{\pi }{4} + \frac{{\pi t}}{{50}}} \right) = 1 \Leftrightarrow \frac{\pi }{4} + \frac{{\pi t}}{{50}} = k2\pi  \Leftrightarrow t =  - 12,5 + 100k\left( {k \in \mathbb{Z}} \right)\)

Mà \(t \in \left[ {0;120} \right]\) nên \(\left\{ \begin{array}{l}0 \le  - 12,5 + 100k \le 120\\k \in \mathbb{Z}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0,125 \le k \le 1,325\\k \in \mathbb{Z}\end{array} \right. \Leftrightarrow k = 1\).

Với \(k = 1\) thì \(t = 87,5\).

Vậy thời điểm thực hiện thí nghiệm là \(87,5\) phút.

Lời giải

Cho hình chóp tứ giác SABCD với đáy ABCD có các cạnh đối diện không song song với nhau và M là một điểm trên cạnh SA. Tìm giao điểm của đường thẳng MC và mặt phẳng (SBD) (ảnh 1)

Trong \[\left( {ABCD} \right)\] gọi \[I = AC \cap BD\].

Trong \[\left( {SAC} \right)\] gọi \[K = MC \cap SI\].

Ta có \[K \in SI \subset \left( {SBD} \right)\] và \[K \in MC\] nên \[K = MC \cap \left( {SBD} \right)\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[x = - \frac{\pi }{2} + k\pi \].                
B.  \[x = - \frac{\pi }{2} + k2\pi \].         
C.  \[x = k\pi \].          
D.  \[x = \frac{\pi }{6} + k\pi \].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP