CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \( - 1 \le \cos \left( {\frac{\pi }{4} + \frac{{\pi t}}{{50}}} \right) \le 1 \Leftrightarrow 100 \le 550 + 450\cos \left( {\frac{\pi }{4} + \frac{{\pi t}}{{50}}} \right) \le 1000 \Leftrightarrow 100 \le h \le 1000\)

Suy ra, \(h\) đạt giá trị lớn nhất bằng \(1000\) khi \(\cos \left( {\frac{\pi }{4} + \frac{{\pi t}}{{50}}} \right) = 1 \Leftrightarrow \frac{\pi }{4} + \frac{{\pi t}}{{50}} = k2\pi  \Leftrightarrow t =  - 12,5 + 100k\left( {k \in \mathbb{Z}} \right)\)

Mà \(t \in \left[ {0;120} \right]\) nên \(\left\{ \begin{array}{l}0 \le  - 12,5 + 100k \le 120\\k \in \mathbb{Z}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}0,125 \le k \le 1,325\\k \in \mathbb{Z}\end{array} \right. \Leftrightarrow k = 1\).

Với \(k = 1\) thì \(t = 87,5\).

Vậy thời điểm thực hiện thí nghiệm là \(87,5\) phút.

Lời giải

Giả sử chiều rộng của con sông là độ dài đoạn thẳng \(OA\). Tìm chiều rộng đó (làm tròn kết quả đến hàng phần mười).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \({u_n} = {u_1} + (n - 1).d\), \(\forall n \in {\mathbb{N}^*}\).                                                       
B. \({u_n} = {u_{n - 1}} + d\), \(n \ge 2\).              
C. \({S_{12}} = \frac{n}{2}\left( {2{u_1} + 11d} \right)\).                                                                       
D. \({u_5} = \frac{{{u_1} + {u_9}}}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP