Câu hỏi:

28/10/2025 55 Lưu

Trong các hàm số sau, hàm số nào đồng biến trên \(\mathbb{R}\)?              

A. \(y = {x^2} + 1\).   
B. \(y = \frac{{x + 1}}{{x + 3}}\).      
C. \(y = {x^4} + {x^2} - 1\).                          
D. \(y = {x^3} + x\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Xét đáp án A có \(y = 3{x^2} + 1 > 0\,\,\,\forall x \in \mathbb{R}\) nên hàm số đồng biến trên \(\mathbb{R}\).

Xét đáp án B và D là hàm số bậc 2 và bậc 4 luôn có khoảng đồng biến, khoảng nghịch biến.

Xét đáp án C có tập xác định là \(D = \mathbb{R}\backslash \left\{ 3 \right\}\) nên không thể đồng biến trên \(\mathbb{R}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

(a) Đúng: Gọi \(C'\left( {x;y;z} \right)\). Ta có \(\overrightarrow {BC'}  = \left( {2; - 6;6} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x - 0 = 2}\\{y - 3 =  - 6}\\{z - 0 = 6}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y =  - 3}\\{z = 6}\end{array}} \right.} \right.\)\( \Rightarrow C\left( {2; - 3;6} \right)\).

(b) Đúng: Gọi \(O'\left( {x;y;z} \right)\). Theo hình vẽ thì \(\overrightarrow {AO'}  = \overrightarrow {BC'}  \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x - 1 = 2}\\{y - 1 =  - 6}\\{z + 1 = 6}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y =  - 5}\\{z = 5}\end{array}} \right.} \right.\)\( \Rightarrow O'\left( {3; - 5;5} \right)\)

(c) Sai: Theo hình vẽ thì \(\overrightarrow {AB'}  = \overrightarrow {OC'}  = \left( {2; - 3;6} \right)\).

(d) Sai: Ta có \(\overrightarrow {HK}  = \overrightarrow {AB}  = \left( { - 1;2;1} \right)\).

Lời giải

Ta có \[P'\left( t \right) = \frac{{ - 8{t^2} - 8t + 6}}{{{{\left( {4{t^2} + 2t + 4} \right)}^2}}} = \frac{{2\left( {2t - 1} \right)\left( { - 2t - 3} \right)}}{{{{\left( {4{t^2} + 2t + 4} \right)}^2}}}\]

\[P'\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t =  - \frac{3}{2}\\t = \frac{1}{2}\end{array} \right.\].

Bảng biến thiên

Sự ảnh hưởng khi sử dụng một loại độc tố đối với vi kh (ảnh 1)

Ta thấy hàm số đạt cực đại tại \[t = \frac{1}{2}\] và \[P'\left( t \right) < 0,\forall t > \frac{1}{2}\] nên sau \[0,5\left( h \right)\] thì vi khuẩn bắt đầu giảm.

Câu 6

A. \(4\).                       
B. \(3\).                       
C. \(2\).     
D. \(1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP