Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau
 Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là              
                                    
                                                                                                                        
Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    Chọn B
Vì \(\mathop {\lim }\limits_{x \to + \infty } \,f\left( x \right) = 5\) \( \Rightarrow \)đường thẳng \(y = 5\) là tiệm cận ngang của đồ thị hàm số.
Vì \(\mathop {\lim }\limits_{x \to - \infty } \,f\left( x \right) = 2\) \( \Rightarrow \) đường thẳng \(y = 2\) là tiệm cận ngang của đồ thị hàm số.
Vì \(\mathop {\lim }\limits_{x \to {1^ - }} \,f\left( x \right) = + \infty \) \( \Rightarrow \)đường thẳng \(x = 1\) là tiệm cận đứng của đồ thị hàm số.
KL: Đồ thị hàm số có tổng số ba đường tiệm cận.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \[P'\left( t \right) = \frac{{ - 8{t^2} - 8t + 6}}{{{{\left( {4{t^2} + 2t + 4} \right)}^2}}} = \frac{{2\left( {2t - 1} \right)\left( { - 2t - 3} \right)}}{{{{\left( {4{t^2} + 2t + 4} \right)}^2}}}\]
\[P'\left( t \right) = 0 \Leftrightarrow \left[ \begin{array}{l}t = - \frac{3}{2}\\t = \frac{1}{2}\end{array} \right.\].
Bảng biến thiên

Ta thấy hàm số đạt cực đại tại \[t = \frac{1}{2}\] và \[P'\left( t \right) < 0,\forall t > \frac{1}{2}\] nên sau \[0,5\left( h \right)\] thì vi khuẩn bắt đầu giảm.
Lời giải
Đặt \(u = {e^{0,2x}}\left( { \Rightarrow {e^{0,1x}} = {u^{1/2}}} \right)\) khi đó \(F(x) = 10890\frac{{{u^{1/2}}}}{{{{(1 + 100u)}^{3/2}}}}\)
Để tìm cực đại, xét \(G(u) = \frac{{{u^{1/2}}}}{{{{(1 + 100u)}^{3/2}}}},\quad u > 0\)
Tính \(\ln G = \frac{1}{2}\ln u - \frac{3}{2}\ln (1 + 100u) \Rightarrow \left( {\ln G} \right)\prime = \frac{1}{{2u}} - \frac{{150}}{{1 + 100u}}\)
Cho đạo hàm bằng 0: \(\frac{1}{{2u}} = \frac{{150}}{{1 + 100u}} \Rightarrow 1 + 100u = 300u \Rightarrow 200u = 1 \Rightarrow u = 0,005\)
Lập bảng biến thiên cho hàm số \(G(u),u > 0\) ta có được hàm số đạt cực đại tại \(u = 0,005\)
Trả về biến \(x\): \({e^{0,2x}} = 0,005 \Rightarrow 0,2x = \ln (0,005) \approx - 5,298 \Rightarrow x \approx - 26,49.\)
(thuộc miền \([ - 200,50]\)).
Giá trị cực đại
- Lực pháp tuyến đạt cực đại khi \(x \approx - 26.5\).
- Giá trị cực đại là khoảng \[419\](lb).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.





 Nhắn tin Zalo
 Nhắn tin Zalo