Trong không gian cho 3 vectơ \[\overrightarrow a ,\,\,\overrightarrow b ,\,\,\overrightarrow c \] không đồng phẳng. Xét các vectơ \[\overrightarrow x = 2\overrightarrow a - \overrightarrow b ,\,\,y = - 4\overrightarrow a + 2\overrightarrow b ,\,\,\overrightarrow z = - 3\overrightarrow a - 2\overrightarrow b \]. Khẳng định nào đúng?
Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
Chọn D
Ta có \[\overrightarrow x = 2\overrightarrow a - \overrightarrow b ,\,\,\overrightarrow y = - 4\overrightarrow a + 2\overrightarrow b = - 2\overrightarrow x \], Do đó hai vectơ \[\overrightarrow x ,\overrightarrow y \] cùng phương.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
(a) Đúng: Gọi \(C'\left( {x;y;z} \right)\). Ta có \(\overrightarrow {BC'} = \left( {2; - 6;6} \right) \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x - 0 = 2}\\{y - 3 = - 6}\\{z - 0 = 6}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 2}\\{y = - 3}\\{z = 6}\end{array}} \right.} \right.\)\( \Rightarrow C\left( {2; - 3;6} \right)\).
(b) Đúng: Gọi \(O'\left( {x;y;z} \right)\). Theo hình vẽ thì \(\overrightarrow {AO'} = \overrightarrow {BC'} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x - 1 = 2}\\{y - 1 = - 6}\\{z + 1 = 6}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y = - 5}\\{z = 5}\end{array}} \right.} \right.\)\( \Rightarrow O'\left( {3; - 5;5} \right)\)
(c) Sai: Theo hình vẽ thì \(\overrightarrow {AB'} = \overrightarrow {OC'} = \left( {2; - 3;6} \right)\).
(d) Sai: Ta có \(\overrightarrow {HK} = \overrightarrow {AB} = \left( { - 1;2;1} \right)\).
Lời giải
Do máy bay giữ nguyên tốc độ nên vận tốc của máy bay trên quãng đường \[AB\] và \[BC\] là như nhau. Ta có: \[\frac{{AB}}{{10}} = \frac{{BC}}{5} \Leftrightarrow AB = 2BC\].
Và máy bay giữ nguyên hướng bay nên hai vectơ \[\overrightarrow {AB} ;\,\overrightarrow {BC} \] cùng hướng.
Do đó \[\overrightarrow {AB} = 2\overrightarrow {BC} \Leftrightarrow \left\{ \begin{array}{l}140 = 2\left( {x - 940} \right)\\50 = 2\left( {y - 550} \right)\\2 = 2\left( {z - 9} \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1010\\y = 575\\z = 10\end{array} \right.\]
Vậy \[x\, + \,y\, + z = 1595\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




