Câu hỏi:

28/10/2025 39 Lưu

Cho tam giác\[ABC\] biết \[c = 5{\rm{cm}};\;b = 8{\rm{cm}},\widehat A = {60^0}\]. Bán kính đường tròn nội tiếp tam giác\[ABC\] bằng

A. \[r = \frac{{10\sqrt 3 }}{{31}}{\rm{cm}}\].  

B. \[r = 2\sqrt 3 {\rm{cm}}\]. 
C. \[r = 1{\rm{cm}}\].     
D. \[r = \sqrt 3 {\rm{cm}}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Ta có

+ \(a = \sqrt {{b^2} + {c^2} - 2bc\cos A}  = \sqrt {{8^2} + {5^2} - 2.8.5.c{\rm{os6}}{{\rm{0}}^0}}  = 7{\rm{cm}}\).

+ \(S = \frac{1}{2}bc\sin A = \frac{1}{2}.8.5.\sin {60^0} = 10\sqrt 3 {\rm{c}}{{\rm{m}}^2};\;\;p = \frac{{a + b + c}}{2} = \frac{{7 + 8 + 5}}{2} = 10{\rm{cm}}\)

Suy ra \(r = \frac{S}{p} = \frac{{10\sqrt 3 }}{{10}} = \sqrt 3 {\rm{cm}}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời

4

 

 

 

 Gọi \(A\) là tập hợp những du khách biết tiếng Anh, \(B\) là tập hợp những du khách biết tiếng Pháp. Theo đề bài, ta có \(|A| = 27,|B| = 21,|A \cap B| = 12\).

Suy ra \(|A \cup B| = |A| + |B| - |A \cap B| = 27 + 21 - 12 = 36\).

Vậy có 36 người biết ít nhất 1 trong hai thứ tiếng. Do đó, số du khách không biết cả hai thứ tiếng là \(40 - 36 = 4\).

Lời giải

Chọn D

Ta có \({\cos ^2}\alpha  = 1 - {\sin ^2}\alpha  = \frac{{144}}{{169}} \Rightarrow \cos \alpha  =  \pm \frac{{12}}{{13}}\)

Do \(\alpha \) là góc tù nên \(\cos \alpha  < 0\), từ đó \(\cos \alpha  =  - \frac{{12}}{{13}}\)

Như vậy \(3\sin \alpha  + 2\cos \alpha  = 3 \cdot \frac{5}{{13}} + 2\left( { - \frac{{12}}{{13}}} \right) =  - \frac{9}{{13}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP