Từ một đỉnh tháp chiều cao \(CD = 80{\rm{m}}\), người ta nhìn hai điểm \(A\) và \(B\) trên mặt đất dưới các góc \(72^\circ 12'\) và \(34^\circ 26'\). Ba điểm \(A,\;B,\,D\) thẳng hàng. Tính khoảng cách \(AB\).
Câu hỏi trong đề: Bộ 10 đề thi giữa kì 1 Toán 10 có đáp án !!
Quảng cáo
Trả lời:
Chọn C
\(AB = BD - AD\)\( = CD.\cot \widehat {CBD} - CD.\cot \widehat {CAD}\)\( \approx 91{\rm{m}}\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Lí, Hóa, Sinh 10 cho cả 3 bộ KNTT, CTST và CD VietJack - Sách 2025 ( 40.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
|
Trả lời |
4 |
|
|
|
Gọi \(A\) là tập hợp những du khách biết tiếng Anh, \(B\) là tập hợp những du khách biết tiếng Pháp. Theo đề bài, ta có \(|A| = 27,|B| = 21,|A \cap B| = 12\).
Suy ra \(|A \cup B| = |A| + |B| - |A \cap B| = 27 + 21 - 12 = 36\).
Vậy có 36 người biết ít nhất 1 trong hai thứ tiếng. Do đó, số du khách không biết cả hai thứ tiếng là \(40 - 36 = 4\).
Câu 2
A. \(3\).
Lời giải
Chọn D
Ta có \({\cos ^2}\alpha = 1 - {\sin ^2}\alpha = \frac{{144}}{{169}} \Rightarrow \cos \alpha = \pm \frac{{12}}{{13}}\)
Do \(\alpha \) là góc tù nên \(\cos \alpha < 0\), từ đó \(\cos \alpha = - \frac{{12}}{{13}}\)
Như vậy \(3\sin \alpha + 2\cos \alpha = 3 \cdot \frac{5}{{13}} + 2\left( { - \frac{{12}}{{13}}} \right) = - \frac{9}{{13}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \(33\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



