Câu hỏi:

28/10/2025 20 Lưu

Trong không gian Oxyz, cho mặt cầu \((S):{x^2} + {y^2} + {z^2} + 2x - 2z - 7 = 0\). bán kính của mặt cầu đã cho bằng              

A. \(\sqrt 7 \).             
B. \(\sqrt {15} \).        
C. \(9\).      
D. \(3\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn D

Ta có:

\((S):{x^2} + {y^2} + {z^2} + 2x - 2z - 7 = 0 \Leftrightarrow {\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = 9 \Leftrightarrow {\left( {x + 1} \right)^2} + {y^2} + {\left( {z - 1} \right)^2} = {3^2}\)

Suy ra bán kính của mặt cầu đã cho bằng \(R = 3\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Quãng đường con tàu \(A\) đi được sau \(t\) giờ là: \(6t\) (hải lý)

Quãng đường con tàu \(B\) đi được sau \(t\) giờ là: \(8t\) (hải lý)

Sau \(t\) giờ khoảng cách giữa hai con tàu là:

\(f(t) = \sqrt {{{\left( {6t} \right)}^2} + {{\left( {10 - 8t} \right)}^2}}  = \sqrt {100{t^2} - 160t + 100}  = \sqrt {{{(10t - 8)}^2} + 36}  \ge 6\)

Khoảng cách giữa hai con tàu ngắn nhất bằng \(6\)(hải lý) khi \(t = \frac{4}{5} = 0,8\) (giờ)

Vậy sau \(0,8\) giờ thì khoảng cách giữa hai con tàu ngắn nhất.

Lời giải

Gọi chiều dài của trang giấy là \(x\,cm\) ta có chiều rộng là \(\frac{{600}}{x}cm\).

Chiều dài và chiều rộng của phần in chữ lần lượt là \(x - 4\) và \(\frac{{600}}{x} - 5\)

Diện tích phần in chữ là \(f\left( x \right) = \left( {\frac{{600}}{x} - 5} \right)\left( {x - 4} \right) = 620 - 5x - \frac{{2400}}{x}\)

\(f'\left( x \right) = \frac{{2400}}{{{x^2}}} - 5 = 0 \Leftrightarrow x =  \pm 4\sqrt {30} \)

Diện tích một trang của một cuốn sách là \(600c{ (ảnh 2)

Vậy diện tích lớn nhất của phần in chữ xấp xỉ 401 \(c{m^2}\).