Câu hỏi:

28/10/2025 102 Lưu

Giả sử doanh số (tính bằng số sản phẩm) của một sản phẩm mới (trong vòng một số năm nhất định) tuân theo quy luật logistic được mô hình hoá bằng hàm số \(f(t) = \frac{{5000}}{{1 + 5{e^{ - t}}}},t \ge 0\) trong đó thời gian \(t\) được tính bằng năm, kể từ khi phát hành sản phẩm mới. Khi đó, đạo hàm \(f\prime (t)\) sẽ biểu thị tốc độ bán hàng. Hỏi sau khi phát hành bao nhiêu năm thì tốc độ bán hàng là lớn nhất? (làm tròn kết quả đến hàng phần mười)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: \(f\prime (t) = \frac{{ - 5000\left( {1 + 5{e^{ - t}}} \right)\prime }}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}} = \frac{{25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}}\)

Tốc độ bán hàng là lớn nhất khi \(f\prime (t)\) lớn nhất.

Đặt \(h(t) = \frac{{25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^2}}}\).

\(h\prime (t) = \frac{{ - 25000{e^{ - t}}{{\left( {1 + 5{e^{ - t}}} \right)}^2} - 2 \cdot \left( { - 5{e^{ - t}}} \right) \cdot \left( {1 + 5{e^{ - t}}} \right) \cdot 25000{e^{ - t}}}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^4}}}\)

\( = \frac{{ - 25000{e^{ - t}}\left( {1 + 5{e^{ - t}}} \right)\left( {1 + 5{e^{ - t}} - 10{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^4}}} = \frac{{ - 25000{e^{ - t}}\left( {1 - 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^3}}}\)

\(h\prime (t) = 0 \Leftrightarrow \frac{{ - 25000{e^{ - t}}\left( {1 - 5{e^{ - t}}} \right)}}{{{{\left( {1 + 5{e^{ - t}}} \right)}^3}}} = 0\)\( \Leftrightarrow 1 - 5{e^{ - t}} = 0 \Leftrightarrow {e^{ - t}} = \frac{1}{5} \Leftrightarrow t = \ln 5({\rm{tm}})\)

Ta có bảng biến thiên với \(t \in [0; + \infty )\):

Giả sử doanh số (tính bằng số sản ph (ảnh 1)

Vậy sau khi phát hành khoảng \(\ln 5 \approx 1,6\) năm thì thì tốc độ bán hàng là lớn nhất.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Quãng đường con tàu \(A\) đi được sau \(t\) giờ là: \(6t\) (hải lý)

Quãng đường con tàu \(B\) đi được sau \(t\) giờ là: \(8t\) (hải lý)

Sau \(t\) giờ khoảng cách giữa hai con tàu là:

\(f(t) = \sqrt {{{\left( {6t} \right)}^2} + {{\left( {10 - 8t} \right)}^2}}  = \sqrt {100{t^2} - 160t + 100}  = \sqrt {{{(10t - 8)}^2} + 36}  \ge 6\)

Khoảng cách giữa hai con tàu ngắn nhất bằng \(6\)(hải lý) khi \(t = \frac{4}{5} = 0,8\) (giờ)

Vậy sau \(0,8\) giờ thì khoảng cách giữa hai con tàu ngắn nhất.

Lời giải

Gọi chiều dài của trang giấy là \(x\,cm\) ta có chiều rộng là \(\frac{{600}}{x}cm\).

Chiều dài và chiều rộng của phần in chữ lần lượt là \(x - 4\) và \(\frac{{600}}{x} - 5\)

Diện tích phần in chữ là \(f\left( x \right) = \left( {\frac{{600}}{x} - 5} \right)\left( {x - 4} \right) = 620 - 5x - \frac{{2400}}{x}\)

\(f'\left( x \right) = \frac{{2400}}{{{x^2}}} - 5 = 0 \Leftrightarrow x =  \pm 4\sqrt {30} \)

Diện tích một trang của một cuốn sách là \(600c{ (ảnh 2)

Vậy diện tích lớn nhất của phần in chữ xấp xỉ 401 \(c{m^2}\).