Câu hỏi:

30/10/2025 23 Lưu

Trên sườn đồi có một cái cây thẳng đứng (tham khảo hình vẽ) đổ bóng dài \(AB = 39,5\;{\rm{m}}\) xuống đồi. Biết góc nghiêng của sườn đồi là \(\alpha  = 26^\circ \) so với phương ngang và góc nâng của mặt trời là \(\beta  = 50^\circ \). Tính chiều cao \(BC\) của cây (kết quả làm tròn đến hàng đơn vị)
Tính chiều cao BC của cây (kết quả làm tròn đến hàng đơn vị) (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 25

Xét tam giác \(ABO\) có \(\left\{ \begin{array}{l}BO = AB.\sin 26^\circ \\AO = AB.\cos 26^\circ \end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}BO = 39,5.\sin 26^\circ  \approx 17,3\\AO = 39,5.\cos 26^\circ  \approx 35,5\end{array} \right.\).

Xét tam giác AOC có \(OC = AO.\tan 50^\circ  = 35,5.\tan 50^\circ  \approx 42,3\).

Suy ra \(BC = OC - OB = 42,3 - 17,3 = 25\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đ, b) S, c) Đ, d) S

a) \(S = \frac{1}{2}AB.AC.\sin A\).

b) \(B{C^2} = A{B^2} + A{C^2} - 2.AB.AC.\cos A\)\( = {8^2} + {5^2} - 2.8.5.\cos 60^\circ \)\( = 49\). Suy ra \(BC = 7\).

c) Có khoảng cách từ B đến AC bằng \(\frac{{2S}}{{AC}} = \frac{{2.\frac{1}{2}.AB.AC.\sin A}}{{AC}} = AB.\sin A = 8.\sin 60^\circ  = 4\sqrt 3 \).

d) Xét tam giác ABC có \(\cos B = \frac{{A{B^2} + B{C^2} - A{C^2}}}{{2.AB.BC}} = \frac{{{8^2} + {7^2} - {5^2}}}{{2.8.7}} = \frac{{11}}{{14}}\).

Xét tam giác ABM có \(A{M^2} = A{B^2} + B{M^2} - 2.AB.BM.\cos B\)\( = {8^2} + {5^2} - 2.8.5.\frac{{11}}{{14}} = \frac{{183}}{7}\).

Suy ra \(AM \approx 5,11\).

Lời giải

a) Đ, b) Đ, c) Đ, d) S

a) Gọi \(x,y,\left( {x,y \ge 0} \right)\) (hecta) lần lượt là diện tích đất dùng để trồng mít và xoài.

Do bác An dự định trồng hai loại cây ăn trái là mít và xoài trong nông trại rộng 100 hecta nên \(x + y \le 100\).

b) Vì mỗi hecta trồng mít cần 20 công chăm sóc và mỗi hecta trồng xoài cần 40 công chăm sóc mà công cần dùng không được vượt quá 2 800 công nên ta có \(20x + 40y \le 2800\) hay \(x + 2y \le 140\).

c) Tổng lợi nhuận thu được là \(E = 150x + 180y\)(triệu đồng).

d) Bài toán trở thành tìm giá trị lớn nhất của \(E = 150x + 180y\) trên miền nghiệm của hệ bất phương trình \(\left\{ \begin{array}{l}x \ge 0\\y \ge 0\\x + y \le 100\\x + 2y \le 140\end{array} \right.\).

Ta có miền nghiệm của hệ bất phương trình là miền tứ giác OABC (phần tô màu).

a) x + y nhỏ hơn hoặc bằng 100.  b) x + 2y nhỏ hơn hoặc bằng 140.  c) Tổng lợi nhuận thu được là (E = 150x + 180y) (triệu đồng).  d) Lợi nhuận thu được lớn nhất là 16 tỷ đồng. (ảnh 1)

Ta có \(O\left( {0;0} \right),A\left( {0;70} \right),B\left( {60;40} \right),C\left( {100;0} \right)\).

Ta có \(E\left( {0;0} \right) = 150.0 + 180.0 = 0\); \(E\left( {0;70} \right) = 150.0 + 180.70 = 12600\);

\(E\left( {60;40} \right) = 150.60 + 180.40 = 16200\); \(E\left( {100;0} \right) = 150.100 + 180.0 = 15000\).

Vậy lợi nhuận thu được lớn nhất là 16,2 tỷ đồng.

Câu 3

A.\(\frac{a}{{\sin A}} = 2R\).

B. \(\sin A = \frac{a}{{2R}}\). 

C. \(b.\sin B = 2R\). 
D. \(\sin C = \frac{{c.\sin A}}{a}.\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP