Câu hỏi:

03/11/2025 41 Lưu

Cho tập hợp \(X = \left\{ {1;2;3;4} \right\}\). Câu nào sau đây đúng?

A. Số tập con của \(X\) là \(16\).

B. Số tập con của \(X\) gồm có \(2\) phần tử là \(8\).

C. Số tập con của \(X\) chứa số \(1\) là \(6\).

D. Số tập con của \(X\) gồm có \(3\) phần tử là \(2\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: A

Số tập con của tập hợp \(X\)là: \({2^4} = 16\).

Số tập con có \(2\) phần tử của tập hợp \(X\) là: \(C_4^2 = 6\).

Số tập con của tập hợp \(X\) chứa số \(1\) là: \(8\).

\(\left\{ 1 \right\}\), \(\left\{ {1;2} \right\},\left\{ {1;3} \right\}\), \(\left\{ {1;4} \right\}\), \(\left\{ {1;2;3} \right\}\), \(\left\{ {1;2;4} \right\}\), \(\left\{ {1;3;4} \right\}\), \(\left\{ {1;2;3;4} \right\}.\)

Số tập con có 3 phần tử của tập hợp \(X\) là: \(C_4^3 = 4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 2

Cho tứ giác ABCD. Gọi I,J lần lượt là trung điểm của AC và BD. Biết vec AB + vec CD  = k vec IJ. Giá trị của k bằng bao nhiêu? (ảnh 1)

Ta có \(\left\{ \begin{array}{l}\overrightarrow {IJ}  = \overrightarrow {IA}  + \overrightarrow {AB}  + \overrightarrow {BJ} \\\overrightarrow {IJ}  = \overrightarrow {IC}  + \overrightarrow {CD}  + \overrightarrow {DJ} \end{array} \right.\).

Cộng theo vế ta được

\(2\overrightarrow {IJ}  = \left( {\overrightarrow {IA}  + \overrightarrow {IC} } \right) + \left( {\overrightarrow {AB}  + \overrightarrow {CD} } \right) + \left( {\overrightarrow {BJ}  + \overrightarrow {DJ} } \right)\)\( \Leftrightarrow 2\overrightarrow {IJ}  = \overrightarrow {AB}  + \overrightarrow {CD} \).

Suy ra \(k = 2\).

Câu 2

A. \(\left| {\overrightarrow {AO} } \right| = \frac{{a\sqrt 3 }}{2}\).

B. \(\left| {\overrightarrow {OA} } \right| = a\).   
C. \(\left| {\overrightarrow {OA} } \right| = \left| {\overrightarrow {OB} } \right|\).  
D. \(\left| {\overrightarrow {OA} } \right| = \frac{{a\sqrt 2 }}{2}\).

Lời giải

Đáp án đúng là: A

Cho hình thoi tâm O, cạnh bằng a và góc A = 60 độ. Kết luận nào sau đây là đúng? (ảnh 1)

Vì \(\widehat A = 60^\circ  \Rightarrow \Delta ABC\) đều \( \Rightarrow AO = \frac{{a\sqrt 3 }}{2} \Rightarrow \left| {\overrightarrow {AO} } \right| = \frac{{a\sqrt 3 }}{2}\)

Câu 3

A. \[\frac{a}{{\sin A}} = 2R\,.\] 

B. \[\sin A = \frac{a}{{2R}}\,.\]
C. \[b\sin B = 2R\,.\]  
D. \[\sin C = \frac{{c\sin A}}{a}\,.\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP