Câu hỏi:

03/11/2025 9 Lưu

Một tam giác có ba cạnh là \(26,28,30.\) Bán kính đường tròn nội tiếp là:

A. \(16.\) 

B. \(8.\) 
C. \(4.\)  
D. \(4\sqrt 2 .\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Ta có: \(p = \frac{{a + b + c}}{2} = \frac{{26 + 28 + 30}}{2} = 42.\)

\(S = pr \Rightarrow r = \frac{S}{p} = \frac{{\sqrt {p(p - a)(p - b)(p - c)} }}{p} = \frac{{\sqrt {42(42 - 26)(42 - 28)(42 - 30)} }}{{42}} = 8.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 11

Vì \(ABCD\) là hình bình hành nên ta có: \(BC = AD = 8,\widehat {ABC} = 180^\circ  - 60^\circ  = 120^\circ \).

Áp dụng định lí côsin cho tam giác \(ABC\), ta có:

\(A{C^2} = A{B^2} + B{C^2} - 2AB \cdot BC \cdot \cos \widehat {ABC} = {5^2} + {8^2} - 2 \cdot 5 \cdot 8 \cdot \cos 120^\circ  = 129\).

\( \Rightarrow AC = \sqrt {129}  \approx 11\).

Câu 2

A. \(\left| {\overrightarrow {AO} } \right| = \frac{{a\sqrt 3 }}{2}\).

B. \(\left| {\overrightarrow {OA} } \right| = a\).   
C. \(\left| {\overrightarrow {OA} } \right| = \left| {\overrightarrow {OB} } \right|\).  
D. \(\left| {\overrightarrow {OA} } \right| = \frac{{a\sqrt 2 }}{2}\).

Lời giải

Đáp án đúng là: A

Cho hình thoi tâm O, cạnh bằng a và góc A = 60 độ. Kết luận nào sau đây là đúng? (ảnh 1)

Vì \(\widehat A = 60^\circ  \Rightarrow \Delta ABC\) đều \( \Rightarrow AO = \frac{{a\sqrt 3 }}{2} \Rightarrow \left| {\overrightarrow {AO} } \right| = \frac{{a\sqrt 3 }}{2}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \(A = \left( { - 1;2} \right]\). 

B. \(A = \left\{ {0;1;2} \right\}\).   
C. \(A = \left\{ { - 1;0;2} \right\}\).  
D. \(A = \left\{ {0;1} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP