Câu hỏi:

03/11/2025 6 Lưu

Gọi \(M,\;N\) lần lượt là trung điểm của các cạnh \(AB,\;AC\) của tam giác đều \(ABC\). Đẳng thức nào sau đây đúng?

A. \(\overrightarrow {MA}  = \overrightarrow {MB} .\)  

B. \(\overrightarrow {AB}  = \overrightarrow {AC} .\)  
C. \(\overrightarrow {MN}  = \overrightarrow {BC} .\)  
D. \(\left| {\overrightarrow {BC} } \right| = 2\left| {\overrightarrow {MN} } \right|.\)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: D

Gọi M,N lần lượt là trung điểm của các cạnh AB,AC của tam giác đều ABC. Đẳng thức nào sau đây đúng? (ảnh 1)

Ta có \(MN\) là đường trung bình của tam giác \(ABC\).

Do đó BC = 2MN  BC  = 2 MN  

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 11

Vì \(ABCD\) là hình bình hành nên ta có: \(BC = AD = 8,\widehat {ABC} = 180^\circ  - 60^\circ  = 120^\circ \).

Áp dụng định lí côsin cho tam giác \(ABC\), ta có:

\(A{C^2} = A{B^2} + B{C^2} - 2AB \cdot BC \cdot \cos \widehat {ABC} = {5^2} + {8^2} - 2 \cdot 5 \cdot 8 \cdot \cos 120^\circ  = 129\).

\( \Rightarrow AC = \sqrt {129}  \approx 11\).

Câu 2

A. \(\left| {\overrightarrow {AO} } \right| = \frac{{a\sqrt 3 }}{2}\).

B. \(\left| {\overrightarrow {OA} } \right| = a\).   
C. \(\left| {\overrightarrow {OA} } \right| = \left| {\overrightarrow {OB} } \right|\).  
D. \(\left| {\overrightarrow {OA} } \right| = \frac{{a\sqrt 2 }}{2}\).

Lời giải

Đáp án đúng là: A

Cho hình thoi tâm O, cạnh bằng a và góc A = 60 độ. Kết luận nào sau đây là đúng? (ảnh 1)

Vì \(\widehat A = 60^\circ  \Rightarrow \Delta ABC\) đều \( \Rightarrow AO = \frac{{a\sqrt 3 }}{2} \Rightarrow \left| {\overrightarrow {AO} } \right| = \frac{{a\sqrt 3 }}{2}\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(A = \left( { - 1;2} \right]\). 

B. \(A = \left\{ {0;1;2} \right\}\).   
C. \(A = \left\{ { - 1;0;2} \right\}\).  
D. \(A = \left\{ {0;1} \right\}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP