PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hệ bất phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}2x + y \le 4\\x + 2y \le 4\\x \ge 0\\y \ge 0\end{array} \right.\).
a) Hệ trên không là hệ bất phương trình bậc nhất hai ẩn.
b) Cặp \(\left( {4;1} \right)\) thuộc miền nghiệm của hệ.
c) Biểu diễn miền nghiệm của hệ là phần được tô đậm như trong hình dưới đây
d) Gọi \(\left( {x;y} \right)\) thỏa mãn hệ. Biểu thức \(F\left( {x;y} \right) = 3x + 4y + 2024\) đạt giá trị lớn nhất tại \(\left( {0;2} \right)\).
PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hệ bất phương trình bậc nhất hai ẩn \(\left\{ \begin{array}{l}2x + y \le 4\\x + 2y \le 4\\x \ge 0\\y \ge 0\end{array} \right.\).
a) Hệ trên không là hệ bất phương trình bậc nhất hai ẩn.
b) Cặp \(\left( {4;1} \right)\) thuộc miền nghiệm của hệ.
c) Biểu diễn miền nghiệm của hệ là phần được tô đậm như trong hình dưới đây

d) Gọi \(\left( {x;y} \right)\) thỏa mãn hệ. Biểu thức \(F\left( {x;y} \right) = 3x + 4y + 2024\) đạt giá trị lớn nhất tại \(\left( {0;2} \right)\).
Quảng cáo
Trả lời:
a) S, b) S, c) Đ, d) S
a) Hệ trên là hệ bất phương trình bậc nhất hai ẩn.
b) Ta thấy tọa độ điểm \(\left( {4;1} \right)\) không thỏa mãn hệ nên \(\left( {4;1} \right)\) không thuộc miền nghiệm của hệ.
c) Miền nghiệm của hệ như hình vẽ

d) Ta có \(F\left( O \right) = 2024,F\left( H \right) = 2032,F\left( G \right) = 2030,F\left( E \right) = \frac{{6100}}{3}\) nên biểu thức \(F\left( {x;y} \right) = 3x + 4y + 2024\) đạt giá trị lớn nhất là tại \(\left( {\frac{4}{3};\frac{4}{3}} \right)\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 2

Ta có \(\left\{ \begin{array}{l}\overrightarrow {IJ} = \overrightarrow {IA} + \overrightarrow {AB} + \overrightarrow {BJ} \\\overrightarrow {IJ} = \overrightarrow {IC} + \overrightarrow {CD} + \overrightarrow {DJ} \end{array} \right.\).
Cộng theo vế ta được
\(2\overrightarrow {IJ} = \left( {\overrightarrow {IA} + \overrightarrow {IC} } \right) + \left( {\overrightarrow {AB} + \overrightarrow {CD} } \right) + \left( {\overrightarrow {BJ} + \overrightarrow {DJ} } \right)\)\( \Leftrightarrow 2\overrightarrow {IJ} = \overrightarrow {AB} + \overrightarrow {CD} \).
Suy ra \(k = 2\).
Câu 2
A. \(\left| {\overrightarrow {AO} } \right| = \frac{{a\sqrt 3 }}{2}\).
Lời giải
Đáp án đúng là: A

Vì \(\widehat A = 60^\circ \Rightarrow \Delta ABC\) đều \( \Rightarrow AO = \frac{{a\sqrt 3 }}{2} \Rightarrow \left| {\overrightarrow {AO} } \right| = \frac{{a\sqrt 3 }}{2}\)
Câu 3
A. \[\frac{a}{{\sin A}} = 2R\,.\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. \[0,001\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
